

Specifications

Hall Effect Current Sensors S26P200D15Y

Advantages:

- Excellent accuracy and linearity
- Low temperature drift •
- Wide frequency bandwidth •
- No insertion loss •
- High Immunity to external interferences
- Insulated plastic case according to . Optimised response time
 - Current overload capability •

Specifications	• l	JL Recognition	$T_A=25^{\circ}C, V_{CC}=\pm15V$	
Parameters	Symbol	S26P200D15Y		
Primary nominal current	l _f	200A	300A	
Maximum current ¹ (at 85°C)	I _{fmax}	± 350A (at R _M ≤ 5Ω)		
Measuring resistance (at 85°C)	R _M	$0\Omega \sim 26\Omega \text{ (at } V_{CC} = \pm 12\text{V})$ $0\Omega \sim 56\Omega \text{ (at } V_{CC} = \pm 15\text{V})$	$0\Omega \sim 4\Omega (at V_{CC} = \pm 12V)^2$ $0\Omega \sim 8\Omega (at V_{CC} = \pm 15V)$	
Conversion Ratio	K _N	1 : 2000		
Rated output current	Ιo	100mA	150mA	
Output current accuracy ³ (at I _f)	Х	I ₀ ± 0.4%		
Offset current ⁴ (at If=0A)	l _{Of}	≤ ± 0.2mA		
Output linearity ³ (0A~If)	٤∟	≤ ± 0.15% (at I _f)		
Power supply voltage ¹	Vcc	± 12V ± 15V ± 5%		
Consumption current	Icc	≤ ± 16mA (Output current is not included)		
Response rime ⁵	t _r	≤ 1.0μs (at di/dt = 100A / μs)		
Thermal drift of gain ⁶	Tclo	≤ ± 0.01% / °C		
Thermal drift of offset current	Tclof	$\leq \pm 0.5$ mA max (at T _A = -40° C $\Leftrightarrow +85^{\circ}$ C)		
Hysteresis error	I _{он}	≤ 0.3 mA (@ I _f =0A \rightarrow I _f \rightarrow I _f =0A)		
Insulation voltage	Vd	AC 3000V, for 1minute (sensing current 0.5mA), inside of through hole \Leftrightarrow terminal		
Insulation resistance	R _{IS}	≥ 500MΩ (@ DC 500V) , inside of through hole \Leftrightarrow terminal		
Secondary coil resistance	Rs	60Ω (at T _A = 70°C), 65Ω (at T _A = 85°C)		
Ambient operation temperature	TA	– 40°C ~ +85°C		
Ambient storage temperature	Ts	– 40°C ~ +90°C		

Features:

Aperture

UL94V0

•

Closed Loop type

Current or voltage output

Conversion ratio $K_N = 1:2000$

Printed circuit board mounting

¹ Maximum current is restricted by V_{CC} — ² I_f = 250A — ³ Without offset current — ⁴ After removal of core hysteresis — ⁵ Time between 90% input current full scale and 90% of sensor output full scale — ⁶Without Thermal drift of offset current

Electrical Performances

Tamura reserve the right to modify its products in order to improve them without prior notice

COMPLIAN

Hall Effect Current Sensors S26P200D15Y

Electrical connection diagram

UL Standard

UL 508 , CSA C22.2 No.14 (UL FILE No.E243511)

• For use in Pollution Degree 2 Environment.

• Maximum Surrounding air temperature rating, 85°C.

CAUTION

Do not wrap the primary conductor around the core part of the product to increase measured current.

Package & Weight Information

Weight	Pcs/box	Pcs/carton	Pcs/pallet
45g	50	200	5400

Tamura reserve the right to modify its products in order to improve them without prior notice

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Current Sensors category:

Click to view products by Tamura manufacturer:

Other Similar products are found below :

 CSDD1EG
 CSDD1FR
 CSLA2ELI
 CSNP661-007
 ACS723LLCTR-10AU-T
 SCL15 10006
 ACS722LLCTR-40AU-T
 ACS723LLCTR-05AB-T

 05AB-T
 L18P003S05
 S25P100D15Y
 ACS723LLCTR-45AB-T
 S23P50100D15
 LA03P035S05
 LA02P085S03

 LA01M041S05
 LA03P021S05
 CSNE151-003
 L18P003S12
 L12P025D15
 L18P020S05
 S18540-B-FWR
 T60404-N4646-X400
 T60404

 N4646-X661
 T60404-N4646-X662
 T60404-N4646-X664
 DRV421RTJT
 CSLA2GE
 S23P50/100D15M1
 ACS723LLCTR-40AU-T

 PA3202NL
 T60404-N4646-X651
 P8203NLT
 CSNJ481-001
 PA3208NL
 PA1005.125QNLT
 PA0368.125NLT
 PA1005.050QNLT
 PE

 68383NLT
 MLX91209LVA-CAA-000-SP
 L37S200D15M
 PA1005.040QNLT
 PA1005.100QNLT
 T60404-N4644-X400
 PA1005.070NLT

 T60404-N4644-X200
 P8206NLT
 T60404-N4644-X101
 T60404-N4646-X401
 PA1005.070QNLT