128-Mbit or 256-Mbit, 528-byte/264-word page, 3 V, SLC NAND flash memories

Features

- High density NAND flash memories
- Up to 256-Mbit memory array
- Up to 32-Mbit spare area
- Cost effective solutions for mass storage applications
- NAND interface
- x8 or x16 bus width
- Multiplexed address/ data
- Pinout compatibility for all densities
- Supply voltage
- $\mathrm{V}_{\mathrm{DD}}=2.7$ to 3.6 V
- Page size
- x8 device: ($512+16$ spare) bytes
- x16 device: (256 + 8 spare) words
- Block size
- x8 device: ($16 \mathrm{~K}+512$ spare) bytes
- x16 device: (8 K + 256 spare) words
- Page read/program
- Random access: $12 \mu \mathrm{~s}$ (3V)/15 us (1.8V) (max)
- Sequential access: 50 ns (min)
- Page program time: $200 \mu \mathrm{~s}$ (typ)
- Copy back program mode
- Fast page copy without external buffering
- Fast block erase
- Block erase time: 2 ms (typical)
- Status register
- Electronic signature
- Chip enable 'don't care'
- Simple interface with microcontroller
- Security features
- OTP area
- Serial number (unique ID)

- Hardware data protection
- Program/erase locked during power transitions
- Data integrity
- 100,000 program/erase cycles
- 10 years data retention
- RoHS compliance
- Lead-free components are compliant with the RoHS directive
- Development tools
- Error correction code software and hardware models
- Bad blocks management and wear leveling algorithms
- File system OS native reference software
- Hardware simulation models

Contents

1 Description 6
2 Memory array organization 14
2.1 Bad Blocks 14
3 Signal descriptions 16
3.1 Inputs/outputs (I/O0-I/O7) 16
3.2 Inputs/outputs (I/O8-I/O15) 16
3.3 Address Latch Enable (AL) 16
3.4 Command Latch Enable (CL) 16
$3.5 \quad$ Chip Enable (E) 16
3.6 Read Enable (R) 16
3.7 Write Enable (W) 17
3.8 Write Protect (WP) 17
3.9 Ready/Busy (RB) 17
$3.10 \mathrm{~V}_{\mathrm{DD}}$ supply voltage 17
$3.11 \mathrm{~V}_{\mathrm{SS}}$ ground 17
4 Bus operations 18
4.1 Command input 18
4.2 Address input 18
4.3 Data input 18
4.4 Data output 19
4.5 Write protect 19
4.6 Standby 19
5 Command set 21
6 Device operations 22
6.1 Pointer operations 22
6.2 Read memory array 23
6.3 Page program 26
6.4 Copy back program 27
6.5 Block erase 28
6.6 Reset 28
6.7 Read status register 28
6.7.1 Write Protection Bit (SR7) 29
6.7.2 $\mathrm{P} / \mathrm{E} / \mathrm{R}$ controller bit (SR6) 29
6.7.3 Error bit (SR0) 29
6.8 Read electronic signature 29
7 Software algorithms 31
7.1 Bad block management 31
7.2 Block replacement 31
7.3 Garbage collection 33
7.4 Wear-leveling algorithm 33
7.5 Error correction code 34
7.6 Hardware simulation models 34
7.6.1 Behavioral simulation models 34
7.6.2 IBIS simulations models 34
8 Program and erase times and endurance cycles 35
9 Maximum ratings 36
10 DC and AC parameters 37
10.1 Ready/busy signal electrical characteristics 47
10.2 Data protection 50
11 Package mechanical 51
12 Part numbering 55
Appendix A Hardware interface examples 56
13 Revision history 58
numonyx 3/60

List of tables

Table 1. NAND128-A and NAND256-A device summary 6
Table 2. Product description 7
Table 3. Signal names 8
Table 4. Valid blocks 14
Table 5. Bus operations 19
Table 6. Address insertion, x8 devices 19
Table 7. Address insertion, xl6 device 20
Table 8. Address definitions 20
Table 9. Commands 21
Table 10. Copy back program addresses 27
Table 11. Status register bits 29
Table 12. Electronic signature 30
Table 13. Block failure. 32
Table 14. Program, erase times and program erase endurance cycles 35
Table 15. Absolute maximum ratings 36
Table 16. Operating and AC measurement conditions 37
Table 17. Capacitance 37
Table 18. DC characteristics, 1.8 V devices 38
Table 19. DC characteristics, 3 V devices 39
Table 20. AC characteristics for command, address, data input 40
Table 21. AC characteristics for operations 41
Table 22. TSOP48-48 lead plastic thin small outline, $12 \times 20 \mathrm{~mm}$, package mechanical data 52
Table 23. VFBGA $8 \times 10 \times 1.05 \mathrm{~mm}-6 \times 8+7$ ball array, 0.8 pitch, package mechanical data 54
Table 24. Ordering information scheme 55
Table 25. Document revision history 58

List of figures

Figure 1. Logic diagram 8
Figure 2. Logic block diagram 9
Figure 3. TSOP48 connections, x8 devices 10
Figure 4. TSOP48 connections, x16 devices 11
Figure 5. VFBGA55 connections, x8 devices (top view through package) 12
Figure 6. VFBGA55 connections, xl6 devices (top view through package) 13
Figure 7. Memory array organization 15
Figure 8. Pointer operations 22
Figure 9. Pointer operations for programming. 23
Figure 10. Read (A, B, C) operations 24
Figure 11. Read block diagrams 24
Figure 12. Sequential row read operations 25
Figure 13. Sequential row read block diagrams 25
Figure 14. Page program operation 26
Figure 15. Copy back operation 27
Figure 16. Block erase operation 28
Figure 17. Bad block management flowchart 32
Figure 18. Garbage collection 33
Figure 19. Error detection 34
Figure 20. Equivalent testing circuit for AC characteristics measurement 38
Figure 21. Command latch AC waveforms. 42
Figure 22. Address latch AC waveforms 42
Figure 23. Data input latch AC waveforms 43
Figure 24. Sequential data output after read AC waveforms 43
Figure 25. Read status register AC waveform 44
Figure 26. Read electronic signature AC waveform 44
Figure 27. Page read A/read B operation AC waveform 45
Figure 28. Read C operation, one page AC waveform 45
Figure 29. Page program AC waveform 46
Figure 30. Block erase AC waveform 46
Figure 31. Reset AC waveform 47
Figure 32. Ready/Busy AC waveform 48
Figure 33. Ready/busy load circuit 48
Figure 34. Resistor value versus waveform timings for Ready/Busy signal 49
Figure 35. Data protection 50
Figure 36. TSOP48-48 lead plastic thin small outline, $12 \times 20 \mathrm{~mm}$, package outline 51
Figure 37. VFBGA55 $8 \times 10 \mathrm{~mm}-6 \times 8$ active ball array, 0.80 mm pitch, package outline 53
Figure 38. Connection to microcontroller, without glue logic 56
Figure 39. Connection to microcontroller, with glue logic. 57
Figure 40. Building storage modules. 57

1 Description

The NAND flash 528 byte/ 264 word page is a family of non-volatile flash memories that uses the single level cell (SLC) NAND cell technology, referred to as the SLC small page family. The devices are either 128 Mbits or 256 Mbits and operate with a 3 V voltage supply. The size of a page is either 528 bytes ($512+16$ spare) or 264 words ($256+8$ spare) depending on whether the device has a x 8 or x 16 bus width.

The address lines are multiplexed with the data input/output signals on a multiplexed x8 or x16 input/output bus. This interface reduces the pin count and makes it possible to migrate to other densities without changing the footprint.

Each block can be programmed and erased up to 100,000 cycles. To extend the lifetime of NAND flash devices it is strongly recommended to implement an error correction code (ECC). A Write Protect pin is available to provide hardware protection against program and erase operations.
The devices feature an open-drain ready/busy output that identifies if the program/erase/ $\operatorname{read}(P / E / R)$ controller is currently active. The use of an open-drain output allows the Ready/Busy pins from several memories to be connected to a single pull-up resistor.

A Copy Back command is available to optimize the management of defective blocks. When a page program operation fails, the data can be programmed in another page without having to resend the data to be programmed.

Table 1 lists the individual part numbers of the device.
Table 1. NAND128-A and NAND256-A device summary

Reference	Part Number
NAND128-A	NAND128W3A
NAND256-A $^{(1)}$	NAND256W3A
	NAND256W4A

1. x 16 organization only available for MCP.

The NAND128-A devices are only available in the TSOP48 ($12 \times 20 \mathrm{~mm}$), while the NAND256-A devices are available in both the TSOP48 and the VFBGA55 (8 x 10 x 1.05 mm) packages.

The devices are available in two different versions:

- No option (Chip Enable 'care', sequential row read enabled): the sequential row read feature allows to download up to all the pages in a block with one read command and addressing only the first page to read
- With Chip Enable 'don't care' feature. This enables the sharing of the bus between more active memories that are simultaneously active as Chip Enable transitions during latency do not stop read operations. Program and erase operations are not interrupted by Chip Enable transitions.

The devices come with the following security features:

- OTP (one time programmable) area, which is a restricted access area where sensitive data/code can be stored permanently. The access sequence and further details about this feature are subject to an NDA (non disclosure agreement)
- Serial number (unique identifier), which enables each device to be uniquely identified. It is subject to an NDA and is, therefore, not described in the datasheet.
For more details about these security features, contact your nearest Micron sales office.
For information on how to order these devices, refer to Table 24: Ordering information scheme. Devices are shipped from the factory with Block 0 always valid and the memory content bits in valid blocks erased to ' 1 '.

See Table 2 for all the devices available in the family.
Table 2. Product description

			$\begin{aligned} & \text { ㄷ } \\ & 0 \\ & 3 \\ & \vdots \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \text { ̌i } \\ & \frac{\mathrm{N}}{\mathrm{n}} \end{aligned}$			Timings				
NAND128-A	NAND128W3A	128 Mbit	x8	$\begin{gathered} 512+16 \\ \text { Bytes } \end{gathered}$	$\begin{aligned} & 16 K+51 \\ & 2 \text { Bytes } \end{aligned}$	$\begin{array}{\|c} 32 \text { pages } \\ \times 1024 \\ \text { Blocks } \end{array}$						TSOP48
NAND256-A ${ }^{(1)}$	NAND256W3A NAND256W4A	256 Mbit	x8 $\times 16$	$\begin{gathered} \begin{array}{c} 512+16 \\ \text { Bytes } \end{array} \\ \hline 256+8 \\ \text { Words } \end{gathered}$	$\begin{gathered} 16 K+51 \\ 2 \text { Bytes } \\ \hline 8 K+256 \\ \text { Words } \end{gathered}$	$\begin{gathered} 32 \text { pages } \\ \times 2048 \\ \text { Blocks } \end{gathered}$	2.7 to 3.6 V	$12 \mu \mathrm{~s}$	50ns	$200 \mu \mathrm{~s}$	2 ms	TSOP48 VFBGA55

[^0]Figure 1. Logic diagram

Table 3. Signal names

Symbol	Function
I/O8-15	Data input/outputs for x16 devices
I/O0-7	Data input/outputs, address inputs, or command inputs for x8 and x16 devices
AL	Address Latch Enable
CL	Command Latch Enable
E	Chip Enable
R	Read Enable
$\mathrm{R} \bar{B}$	Ready/Busy (open-drain output)
W	Write Enable
WP	Write Protect
V_{DD}	Supply voltage
V_{SS}	Ground
NC	Not connected internally
DU	Do not use

Figure 2. Logic block diagram

Figure 3. TSOP48 connections, $x 8$ devices

1. This pin is DU in the USOP48 package

Figure 4. TSOP48 connections, $\times 16$ devices

1. This pin is DU in the USOP48 package.

Figure 5. VFBGA55 connections, $x 8$ devices (top view through package)

Figure 6. VFBGA55 connections, x16 devices (top view through package)

2 Memory array organization

The memory array comprises NAND structures where 16 cells are connected in series.
The memory array is organized in blocks where each block contains 32 pages. The array is split into two areas, the main area and the spare area. The main area of the array stores data, whereas the spare area is typically used to store error correction codes, software flags or bad block identification.

In x8 devices the pages are split into a main area with two half pages of 256 bytes each and a spare area of 16 bytes. In the x16 devices the pages are split into a 256 -word main area and an 8-word spare area. Refer to Figure 7: Memory array organization.

2.1 Bad Blocks

The NAND flash 528 byte/ 264 word page devices may contain bad blocks, that is blocks that contain one or more invalid bits whose reliability is not guaranteed. Additional bad blocks may develop during the lifetime of the device.

The bad block information is written prior to shipping (refer to Section 2.1: Bad Blocks for more details).

Table 4 shows the minimum number of valid blocks in each device. The values shown include both the bad blocks that are present when the device is shipped and the bad blocks that could develop later on.

These blocks need to be managed using bad blocks management, block replacement or error correction codes (refer to Section 7: Software algorithms).

Table 4. Valid blocks

Density of device	Minimum	Maximum
256 Mbits	2008	2048
128 Mbits	1004	1024

Figure 7. Memory array organization

3 Signal descriptions

See Figure 1: Logic diagram and Table 3: Signal names for a brief overview of the signals connected to this device.

3.1 Inputs/outputs (I/O0-I/O7)

Input/Outputs 0 to 7 input the selected address, output the data during a read operation or input a command or data during a write operation. The inputs are latched on the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or the outputs are disabled.

3.2 Inputs/outputs (I/O8-I/O15)

Input/outputs 8 to 15 are only available in x16 devices. They output the data during a read operation or input data during a write operation. Command and address inputs only require $\mathrm{I} / \mathrm{O} 0$ to $\mathrm{I} / \mathrm{O} 7$.
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when the device is deselected or the outputs are disabled.

3.3 Address Latch Enable (AL)

Address Latch Enable activates the latching of the address inputs in the command interface. When AL is high, the inputs are latched on the rising edge of Write Enable.

3.4 Command Latch Enable (CL)

The Command Latch Enable activates the latching of the command inputs in the command interface. When CL is high, the inputs are latched on the rising edge of Write Enable.

3.5 Chip Enable (E)

The Chip Enable input activates the memory control logic, input buffers, decoders and read circuitry. When Chip Enable is low, V_{IL}, the device is selected. If Chip Enable goes High (V_{IH}) while the device is busy, the device remains selected and does not go into standby mode.

3.6 Read Enable ($\overline{\mathbf{R}})$

Read Enable, $\overline{\mathrm{R}}$, controls the sequential data output during read operations. Data is valid $t_{\text {RLQV }}$ after the falling edge of $\overline{\mathrm{R}}$. The falling edge of $\overline{\mathrm{R}}$ also increments the internal column address counter by one.

3.7 Write Enable ($\overline{\mathbf{W}}$)

The Write Enable input, $\overline{\mathrm{W}}$, controls writing to the Command Interface, Input Address and Data latches. Both addresses and data are latched on the rising edge of Write Enable.

During power-up and power-down a recovery time of $10 \mu \mathrm{~s}(\mathrm{~min})$ is required before the Command Interface is ready to accept a command. It is recommended to keep Write Enable high during the recovery time.

3.8 Write Protect ($\overline{\mathbf{W P}}$)

The Write Protect pin is an input that provides hardware protection against unwanted program or erase operations. When Write Protect is Low, V_{IL}, the device does not accept any program or erase operations.

It is recommended to keep the Write Protect pin Low, V_{IL}, during power-up and powerdown.

3.9 Ready/Busy ($\mathbf{R} \overline{\mathbf{B}}$)

The Ready/Busy output, $R \bar{B}$, is an open-drain output that can be used to identify if the $P / E / R$ controller is currently active.

When Ready/Busy is Low, V_{OL}, a read, program or erase operation is in progress. When the operation completes Ready/Busy goes High, V_{OH}.

The use of an open-drain output allows the Ready/Busy pins from several memories to be connected to a single pull-up resistor. A Low then indicates that one or more of the memories is busy.

Refer to the Section 10.1: Ready/busy signal electrical characteristics for details on how to calculate the value of the pull-up resistor.

$3.10 \quad \mathrm{~V}_{\mathrm{DD}}$ supply voltage

V_{DD} provides the power supply to the internal core of the memory device. It is the main power supply for all operations (read, program and erase).
An internal voltage detector disables all functions whenever V_{DD} is below the $\mathrm{V}_{\mathrm{LKO}}$ threshold (see paragraph Figure 35: Data protection) to protect the device from any involuntary program/erase operations durings power-transitions.
Each device in a system should have V_{DD} decoupled with a $0.1 \mu \mathrm{~F}$ capacitor. The PCB track widths should be sufficient to carry the required program and erase currents

$3.11 \quad V_{\text {ss }}$ ground

Ground, V_{SS}, is the reference for the power supply. It must be connected to the system ground.

4 Bus operations

There are six standard bus operations that control the memory. Each of these is described in this section, see Table 5: Bus operations for a summary.

4.1 Command input

Command input bus operations give commands to the memory. Commands are accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable is Low, and Read Enable is High. They are latched on the rising edge of the Write Enable signal.

Only I/O0 to I/O7 input commands.
See Figure 21: Command latch AC waveforms and Table 14: Program, erase times and program erase endurance cycles for details of the timings requirements.

4.2 Address input

Address input bus operations input the memory address. Three bus cycles are required to input the addresses (refer to Tables Table 6: Address insertion, $x 8$ devices and Table 7: Address insertion, x16 device).

The addresses are accepted when Chip Enable is Low, Address Latch Enable is High, Command Latch Enable is Low, and Read Enable is High. They are latched on the rising edge of the Write Enable signal. Only I/O0 to I/O7 input addresses.

See Figure 22: Address latch AC waveforms and Table 14: Program, erase times and program erase endurance cycles for details of the timings requirements.

4.3 Data input

Data input bus operations input the data to be programmed.
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command Latch Enable is Low, and Read Enable is High. The data is latched on the rising edge of the Write Enable signal and is input sequentially using the Write Enable signal.

See Figure 23: Data input latch AC waveforms and Table 14: Program, erase times and program erase endurance cycles and Table 21: AC characteristics for operations for details of the timings requirements.

4.4 Data output

Data output bus operations read the data in the memory array, the status register, the electronic signature, and the serial number.

Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low, and Command Latch Enable is Low.

The data is output sequentially using the Read Enable signal.
See Figure 24: Sequential data output after read AC waveforms and Table 21: AC characteristics for operations for details of the timings requirements.

4.5 Write protect

Write protect bus operations protect the memory against program or erase operations. When the Write Protect signal is Low the device does not accept program or erase operations, therefore, the contents of the memory array cannot be altered. The Write Protect signal is not latched by Write Enable to ensure protection, even during power-up.

4.6 Standby

When Chip Enable is High the memory enters standby mode: the device is deselected, outputs are disabled and power consumption is reduced.

Table 5. Bus operations

Bus operation	\mathbf{E}	$\mathbf{A L}$	$\mathbf{C L}$	\mathbf{R}	\mathbf{w}	$\mathbf{w P}$	$\mathbf{I / O 0}-\mathbf{I / O 7}$	$\mathbf{I / 0 8}-\mathbf{1}$ $\mathbf{I / 0 1 5}$
Command input	V_{IL}	V_{IL}	V_{IH}	V_{IH}	Rising	$\mathrm{X}^{(2)}$	Command	X
Address input	V_{IL}	V_{IH}	V_{IL}	V_{IH}	Rising	X	Address	X
Data input	V_{IL}	V_{IL}	V_{IL}	V_{IH}	Rising	X	Data input	Data input
Data output	V_{IL}	V_{IL}	V_{IL}	Fallin g	V_{IH}	X	Data output	Data output
Write protect	X	X	X	X	X	V_{IL}	X	X
Standby	V_{IH}	X	X	X	X	X	X	X

1. Only for x 16 devices.
2. $\overline{\mathrm{WP}}$ must be V_{IH} when issuing a program or erase command.

Table 6. Address insertion, $\mathbf{x 8}$ devices ${ }^{(1)}{ }^{(2)}$

Bus Cycle	I/07	I/06	$\mathbf{I / 0 5}$	$\mathbf{I / 0 4}$	$\mathbf{I / 0 3}$	$\mathbf{I / O 2}$	$\mathbf{I / 0 1}$	I/00
$1^{\text {st }}$	A7	A6	A5	A4	A3	A2	A1	A0
$2^{\text {nd }}$	A16	A15	A14	A13	A12	A11	A10	A9
$3^{\text {rd }}$	A24	A23	A22	A21	A20	A19	A18	A17

1. A8 is set Low or High by the 00 h or 01 h command (see Section 6.1: Pointer operations)
2. Any additional address input cycles are ignored.

Table 7. Address insertion, $\times 16$ device ${ }^{(1)(2)(3)}$

Bus Cycle	$\mathbf{I / 0 8}$ $\mathbf{I / 0 1 5}$	I/07	I/06	I/05	I/04	$\mathbf{I / 0 3}$	$\mathbf{I / 0 2}$	I/01	I/00
$1^{\text {st }}$	X	A7	A6	A5	A4	A3	A2	A1	A0
$2^{\text {nd }}$	X	A16	A15	A14	A13	A12	A11	A10	A9
$3^{\text {rd }}$	X	A24	A23	A22	A21	A20	A19	A18	A17

1. A 8 is 'don't care' in $\times 16$ devices.
2. Any additional address input cycles are ignored.
3. The 01 h command is not used in x 16 devices

Table 8. Address definitions

Address	Definition
A0 - A7	Column address
A9 - A26	Page address
A9 - A13	Address in block
A14 - A26	Block address
A8	A8 is set Low or High by the 00h or 01h command, and is 'don't care' in x16
devices	

5 Command set

All bus write operations to the device are interpreted by the command interface. The commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when the Command Latch Enable signal is high. Device operations are selected by writing specific commands to the command register. The two-step command sequences for program and erase operations are imposed to maximize data security.

The commands are summarized in Table 9.
Table 9. Commands

Command	Bus write operations(1) (2)			Command accepted during busy
	$\mathbf{1}^{\text {st }}$ cycle	$\mathbf{2}^{\text {nd }}$ cycle	$\mathbf{3}^{\text {rd }}$ cycle	-
Read A	00 h	-	-	
Read B	$01 \mathrm{~h}^{(2)}$	-	-	
Read C	50 h	-	-	
Read Electronic Signature	90 h	-	-	
Read Status Register	70 h	-	-	Yes
Page Program	80 h	10 h	-	
Copy Back Program	00 h	8 Ah	10 h	
Block Erase	60 h	D0h	-	
Reset	FFh	-	-	Yes

1. The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or input/output data are not shown.
2. Any undefined command sequence is ignored by the device.

6 Device operations

6.1 Pointer operations

As the NAND flash memories contain two different areas for x 16 devices and three different areas for x8 devices (see Figure 8) the read command codes (00h, 01h, 50h) act as pointers to the different areas of the memory array (they select the most significant column address).

The Read A and Read B commands act as pointers to the main memory area. Their use depends on the bus width of the device.

- In x16 devices the Read A command (00h) sets the pointer to Area A (the whole of the main area), that is words 0 to 255.
- In x8 devices the Read A command (00h) sets the pointer to Area A (the first half of the main area), that is bytes 0 to 255 , and the Read B command (01 h) sets the pointer to Area B (the second half of the main area), that is bytes 256 to 511.

In both the x 8 and x 16 devices the Read C command (50h) acts as a pointer to Area C (the spare memory area), that is bytes 512 to 527 or words 256 to 263 .

Once the Read A and Read C commands have been issued the pointer remains in the respective areas until another pointer code is issued. However, the Read B command is effective for only one operation, once an operation has been executed in Area B the pointer returns automatically to Area A.

The pointer operations can also be used before a program operation, that is the appropriate code ($00 \mathrm{~h}, 01 \mathrm{~h}$ or 50 h) can be issued before the program command 80 h is issued (see Figure 9: Pointer operations for programming).

Figure 8. Pointer operations

Figure 9. Pointer operations for programming

6.2 Read memory array

Each operation to read the memory area starts with a pointer operation as shown in the Section 6.1: Pointer operations. Once the area (main or spare) has been selected using the Read A, Read B or Read C commands three bus cycles are required to input the address of the data to be read.

The device defaults to Read A mode after power-up or a reset operation.
When reading the following spare area addresses:

- $\quad \mathrm{A} 0$ to A 3 (x8 devices)
- A0 to A2 (x16 devices)
set the start address of the spare area, while the following addresses are ignored:
- A4 to A7 (x8 devices)
- A3 to A7 (x16 devices)

Once the Read A or Read C commands have been issued they do not need to be reissued for subsequent read operations as the pointer remains in the respective area. However, the Read B command is effective for only one operation; once an operation has been executed in Area B the pointer returns automatically to Area A. Another Read B command is required to start another read operation in Area B.
Once a read command is issued two types of operations are available: random read and page read.

- Random read

Each time the command is issued the first read is random read.

- Page read

After the random read access the page data is transferred to the page buffer in a time of $\mathrm{t}_{\mathrm{WHBH}}$ (refer to Table 21: AC characteristics for operations for the value). Once the transfer is complete the Ready/Busy signal goes High. The data can then be read out sequentially (from the selected column address to the last column address) by pulsing the Read Enable signal.

- Sequential row read

After the data in last column of the page is output, if the Read Enable signal is pulsed
and Chip Enable remains Low, then the next page is automatically loaded into the page buffer and the read operation continues. A sequential row read operation can only be used to read within a block. If the block changes a new read command must be issued. Refer to Figure 12: Sequential row read operations and Figure 13: Sequential row read block diagrams for details about sequential row read operations. To terminate a sequential row read operation, set to High the Chip Enable signal for more than $t_{\text {EHEL. }}$. Sequential row read is not available when the Chip Enable don't care option is enabled.

Figure 10. Read (A, B, C) operations

Figure 11. Read block diagrams

1. The highest address depends on the device density.

Figure 12. Sequential row read operations

Figure 13. Sequential row read block diagrams

6.3 Page program

The page program operation is the standard operation to program data to the memory array.

The main area of the memory array is programmed by page, however partial page programming is allowed where any number of bytes (1 to 528) or words (1 to 264) can be programmed.

The maximum number of consecutive partial page program operations allowed in the same page is three. After exceeding this a Block Erase command must be issued before any further program operations can take place in that page.

Before starting a page program operation a pointer operation can be performed to point to the area to be programmed. Refer to Section 6.1: Pointer operations and Figure 9: Pointer operations for programming for details.

Each page program operation consists of the following five steps (see Figure 14: Page program operation):

1. One bus cycle is required to setup the Page Program command
2. Four bus cycles are then required to input the program address (refer to Table 6: Address insertion, x8 devices)
3. The data is then input (up to 528 bytes/ 264 words) and loaded into the page buffer
4. One bus cycle is required to issue the confirm command to start the $\mathrm{P} / \mathrm{E} / \mathrm{R}$ controller.
5. The P/E/R controller then programs the data into the array.

Once the program operation has started the status register can be read using the Read Status Register command. During program operations the status register only flags errors for bits set to ' 1 ' that have not been successfully programmed to ' 0 '.

During the program operation, only the Read Status Register and Reset commands are accepted; all other commands are ignored.

Once the program operation has completed the $\mathrm{P} / \mathrm{E} / \mathrm{R}$ controller bit SR6 is set to ' 1 ' and the Ready/Busy signal goes High.

The device remains in read status register mode until another valid command is written to the command interface.

Figure 14. Page program operation

1. Before starting a page program operation a pointer operation can be performed. Refer to Section 6.1: Pointer operations for details.

6.4 Copy back program

The copy back program operation copies the data stored in one page and reprogram it in another page.

The copy back program operation does not require external memory and so the operation is faster and more efficient because the reading and loading cycles are not required. The operation is particularly useful when a portion of a block is updated and the rest of the block needs to be copied to the newly assigned block.

If the copy back program operation fails an error is signalled in the status register. However, as the standard external ECC cannot be used with the copy back operation bit error due to charge loss cannot be detected. For this reason it is recommended to limit the number of copy back operations on the same data and or to improve the performance of the ECC.

The copy back program operation requires the following three steps:

1. The source page must be read using the Read A command (one bus write cycle to setup the command and then 4 bus write cycles to input the source page address). This operation copies all 264 words/ 528 bytes from the page into the page buffer.
2. When the device returns to the ready state (Ready/Busy High), the second bus write cycle of the command is given with the 4 bus cycles to input the target page address. Refer to Table 10 for the addresses that must be the same for the source and target pages.
3. Then the confirm command is issued to start the P/E/R controller.

After a copy back program operation, a partial-page program is not allowed in the target page until the block has been erased. See Figure 15 for an example of the copy back operation.

Table 10. Copy back program addresses

Density	Same address for source and target pages
128 Mbit	A 23
256 Mbit	A 24

Figure 15. Copy back operation

6.5 Block erase

Erase operations are done one block at a time. An erase operation sets all of the bits in the addressed block to ' 1 '. All previous data in the block is lost.

An erase operation consists of the following three steps (refer to Figure 16: Block erase operation):

1. One bus cycle is required to set up the Block Erase command.
2. Only two bus cycles are required to input the block address. The first cycle (A0 to A7) is not required as only addresses A14 to A26 (highest address depends on device density) are valid, A9 to A13 are ignored. In the last address cycle I/O2 to I/O7 must be set to V_{IL}.
3. One bus cycle is required to issue the confirm command to start the $\mathrm{P} / \mathrm{E} / \mathrm{R}$ controller.

Once the erase operation has completed the status register can be checked for errors.
Figure 16. Block erase operation

6.6 Reset

The Reset command resets the command interface and status register. If the Reset command is issued during any operation, the operation is aborted. If it was a program or erase operation that was aborted, the contents of the memory locations being modified are no longer valid as the data is partially programmed or erased.
If the device has already been reset then the new Reset command is not accepted.
The Ready/Busy signal goes Low for $\mathrm{t}_{\mathrm{BLBH} 4}$ after the Reset command is issued. The value of $\mathrm{t}_{\mathrm{BLBH} 4}$ depends on the operation that the device was performing when the command was issued (refer to Table 21: AC characteristics for operations for the values.)

6.7 Read status register

The device contains a status register which provides information on the current or previous program or erase operation. the various bits in the status register convey information and errors on the operation.
the status register is read by issuing the read status register command. the status register information is present on the output data bus (I/O0-I/O7) on the falling edge of chip enable or read enable, whichever occurs last. when several memories are connected in a system, the use of chip enable and read enable signals allows the system to poll each device separately, even when the ready/busy pins are common-wired. it is not necessary
to toggle the chip enable or read enable signals to update the contents of the status register.
After the read status register command has been issued, the device remains in read status register mode until another command is issued. therefore if a read status register command is issued during a random read cycle a new read command must be issued to continue with a page read.
The status register bits are summarized in Table 11: Status register bits, to which you should refer in conjunction with the following sections.

6.7.1 Write Protection Bit (SR7)

The Write Protection bit identifies if the device is protected or not. If the Write Protection bit is set to ' 1 ' the device is not protected and program or erase operations are allowed. If the Write Protection bit is set to ' 0 ' the device is protected and program or erase operations are not allowed.

6.7.2 P/E/R controller bit (SR6)

The program/erase/read controller bit indicates whether the $\mathrm{P} / \mathrm{E} / \mathrm{R}$ controller is active or inactive. When the $P / E / R$ controller bit is set to ' 0 ', the $P / E / R$ controller is active (device is busy); when the bit is set to ' 1 ', the $\mathrm{P} / \mathrm{E} / \mathrm{R}$ controller is inactive (device is ready).

6.7.3 Error bit (SRO)

The error bit identifies if any errors have been detected by the P/E/R controller. The error bit is set to ' 1 ' when a program or erase operation has failed to write the correct data to the memory. If the error bit is set to ' 0 ' the operation has completed successfully.

SR5, SR4, SR3, SR2 and SR1 are reserved.
Table 11. Status register bits

Bit	Name	Logic level	Definition
SR7	Write protection	'1'	Not protected
		'0'	Protected
SR6	Program/erase/read controller	'1'	P/E/R C inactive, device ready
		'0'	P/E/R C active, device busy
SR5, SR4, SR3, SR2, SR1	Reserved	'don't care'	
SRO	Generic error	'1'	Error - operation failed
		'0'	No error - operation successful

6.8 Read electronic signature

The device contains a manufacturer code and device code. To read these codes the following two steps are required:

1. First use one bus write cycle to issue the Read Electronic Signature command (90h), followed by an address input of 00 h .
2. Then, perform two bus read operations. The first one reads the manufacturer code and the second reads the device code. Further bus read operations are ignored.
Refer to Table 12 for information on the addresses.
Table 12. Electronic signature

Part number	Manufacturer code	Device code
NAND128W3A	20 h	73 h
NAND256R3A	20 h	35 h
NAND256W3A		75 h
NAND256R4A	0020 h	0045 h
NAND256W4A		0055 h

7 Software algorithms

This section gives information on the software algorithms that Numonyx recommends to implement to manage the bad blocks and extend the lifetime of the NAND device.
NAND flash memories are programmed and erased by Fowler-Nordheim tunneling using a high voltage. Exposing the device to a high voltage for extended periods can cause the oxide layer to be damaged. For this reason, the number of program and erase cycles is limited (see Table 14: Program, erase times and program erase endurance cycles for the values) and it is recommended to implement garbage collection, a wear-leveling algorithm and an error correction code to extend the number of program and erase cycles and increase the data retention.

For the integration of NAND memories into an application, Numonyx provides a full range of software solutions such as file systems, sector managers, drivers, and code management.
Contact the nearest Numonyx sales office or visit www.numonyx.com for more details.

7.1 Bad block management

Devices with bad blocks have the same quality level and the same AC and DC characteristics as devices where all the blocks are valid. A bad block does not affect the performance of valid blocks because it is isolated from the bit line and common source line by a select transistor.

The devices are supplied with all the locations inside valid blocks erased (FFh). The bad block information is written prior to shipping. Any block where the 6 th byte (x8 device)/1st word (x16 device) in the spare area of the 1st page does not contain FFh is a bad block.

The bad block information must be read before any erase is attempted as the bad block information may be erased. For the system to be able to recognize the bad blocks based on the original information it is recommended to create a bad block table following the flowchart shown in Figure 17: Bad block management flowchart.

7.2 Block replacement

Over the lifetime of the device additional bad blocks may develop. In this case the block has to be replaced by copying the data to a valid block. These additional bad blocks can be identified as attempts to program or erase them outputs errors to the status register.

As the failure of a page program operation does not affect the data in other pages in the same block, the block can be replaced by re-programming the current data and copying the rest of the replaced block to an available valid block. The Copy Back Program command can be used to copy the data to a valid block.

Refer to Section 6.4: Copy back program for more details.

Refer to Table 13 for the recommended procedure to follow if an error occurs during an operation.

Table 13. Block failure

Operation	Recommended procedure
Erase	Block replacement
Program	Block replacement or ECC
Read	ECC

Figure 17. Bad block management flowchart

7.3 Garbage collection

When a data page needs to be modified, it is faster to write to the first available page, and the previous page is marked as invalid. After several updates it is necessary to remove invalid pages to free some memory space.
To free this memory space and allow further program operations it is recommended to implement a garbage collection algorithm. In a garbage collection software the valid pages are copied into a free area and the block containing the invalid pages is erased (see Figure 18: Garbage collection).

Figure 18. Garbage collection
New Area (After GC)

7.4 Wear-leveling algorithm

For write-intensive applications, it is recommended to implement a wear-leveling algorithm to monitor and spread the number of write cycles per block.

In memories that do not use a wear-leveling algorithm not all blocks get used at the same rate. Blocks with long-lived data do not endure as many write cycles as the blocks with frequently-changed data.
The wear-leveling algorithm ensures that equal use is made of all the available write cycles for each block. There are two wear-leveling levels:

- First level wear-leveling: new data is programmed to the free blocks that have had the fewest write cycles.
- Second level wear-leveling: long-lived data is copied to another block so that the original block can be used for more frequently-changed data.

The second level wear-leveling is triggered when the difference between the maximum and the minimum number of write cycles per block reaches a specific threshold.

7.5 Error correction code

An error correction code (ECC) can be implemented in the NAND flash memories to identify and correct errors in the data.

The recommendation is to implement 23 bits of ECC for every 4096 bits in the device.
Figure 19. Error detection

7.6 Hardware simulation models

7.6.1 Behavioral simulation models

Denali Software Corporation models are platform-independent functional models designed to assist customers in performing entire system simulations (typical VHDL/Verilog). These models describe the logic behavior and timings of NAND flash devices, and, therefore, allow software to be developed before hardware.

7.6.2 IBIS simulations models

IBIS (I/O buffer information specification) models describe the behavior of the I/O buffers and electrical characteristics of flash devices.

These models provide information such as AC characteristics, rise/fall times, and package mechanical data, all of which are measured or simulated at voltage and temperature ranges wider than those allowed by target specifications.

IBIS models simulate PCB connections and can resolve compatibility issues when upgrading devices. They can be imported into SPICETOOLS.

8 Program and erase times and endurance cycles

The program and erase times and the number of program/ erase cycles per block are shown in Table 14.

Table 14. Program, erase times and program erase endurance cycles

Parameters	NAND flash			Unit
	Min	Typ	Max	
Page program time		200	500	$\mu \mathrm{~s}$
Block erase time		2	3	ms
Program/erase cycles (per block)	100,000			cycles
Data retention	10			years

9 Maximum ratings

Stressing the device above the ratings listed in Table 15 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Table 15. Absolute maximum ratings

Symbol	Parameter		Value		Unit
			Min	Max	
$\mathrm{T}_{\mathrm{BIAS}}$	Temperature under bias	-50	125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {LEAD }}$	Lead temperature during soldering ${ }^{(1)}$		260	${ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {IO }}{ }^{(2)}$	Input or output voltage	1.8 V devices	-0.6	2.7	V
		3 V devices	-0.6	4.6	V
$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage	1.8 V devices	-0.6	2.7	V
		3 V devices	-0.6	4.6	V

[^1]
10 DC and AC parameters

This section summarizes the operating and measurement conditions and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables in this section are derived from tests performed under the measurement conditions summarized in Table 16. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.

Table 16. Operating and AC measurement conditions

Parameter		NAND flash		Units
		Min	Max	
Supply voltage (V_{DD})	1.8 V devices	1.7	1.95	V
	3 V devices	2.7	3.6	V
Ambient (T_{A})	Grade 6	-40	85	${ }^{\circ} \mathrm{C}$
Load capacitance (C_{L}) (1 TTL GATE and C_{L})	1.8 V devices	30		pF
	$\begin{aligned} & 3 \mathrm{~V} \text { devices } \\ & (2.7-3.6 \mathrm{~V}) \end{aligned}$	50		pF
	3 V devices (3.0-3.6V)	100		pF
Input pulses voltages	1.8 V devices	0	V_{DD}	V
	3 V devices	0.4	2.4	V
Input and output timing ref. voltages	1.8 V devices	0.9		V
	3 V devices	1.5		V
Input rise and fall times		5		ns
Output circuit resistors, $\mathrm{R}_{\text {ref }}$		8.35		$\mathrm{k} \Omega$

Table 17. Capacitance ${ }^{(1)(2)}$

Symbol	Parameter	Test condition	Typ	Max	Unit
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		10	pF
$\mathrm{C}_{\text {I/O }}$	Input/output capacitance	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$		10	pF

1. $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. CIN and CI / O are not 100% tested.
2. Input/output capacitances double on stacked devices

Table 18. DC characteristics, 1.8 V devices ${ }^{(1)}$

Symbol	Parameter		Test conditions	Min	Typ	Max	Unit	
$\mathrm{I}_{\mathrm{DD} 1}$	Operating Current	Sequential read	$\mathrm{t}_{\text {RLRL }}$ minimum $\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}, \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}$	-	8	15	mA	
$\mathrm{I}_{\mathrm{DD} 2}$		Program	-	-	8	15	mA	
IDD3		Erase	-	-	8	15	mA	
$\mathrm{I}_{\mathrm{DD} 5}$	Standby current (CMOS)		$\begin{aligned} & \bar{E}=V_{D D}-0.2, \\ & \overline{W P}=0 / V_{D D} \end{aligned}$	-	10	50	$\mu \mathrm{A}$	
			-	20	100	$\mu \mathrm{A}$		
I_{LI}	Input leakage current			$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {DD }}$ max	-	-	± 10	$\mu \mathrm{A}$
ILO	Output leakage current		$\mathrm{V}_{\text {OUT }}=0 \text { to }$ $V_{D D} \max$	-	-	± 10	$\mu \mathrm{A}$	
V_{IH}	Input High voltage		-	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
$\mathrm{V}_{\text {IL }}$	Input Low voltage		-	-0.3	-	0.4	V	
V_{OH}	Output High voltage level		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.1$	-	-	V	
V_{OL}	Output Low voltage level		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	-	-	0.1	V	
$\mathrm{IOL}(\mathrm{R} \overline{\mathrm{B}}$)	Output Low current (RE)		$\mathrm{V}_{\mathrm{OL}}=0.1 \mathrm{~V}$	3	4		mA	
$\mathrm{V}_{\text {LKO }}$	V_{DD} supply voltage (erase and program lockout)		-	-	-	1.1	V	

1. Leakage currents double on stacked devices.

Figure 20. Equivalent testing circuit for AC characteristics measurement

Table 19. DC characteristics, 3 V devices ${ }^{(1)}$

Symbol	Parameter		Test conditions	Min	Typ	Max	Unit	
$\mathrm{I}_{\mathrm{DD} 1}$	Operating current	Sequential read	$\mathrm{t}_{\text {RLRL }}$ minimum $\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	-	10	20	mA	
$\mathrm{I}_{\text {DD2 }}$		Program	-	-	10	20	mA	
IDD3		Erase	-	-	10	20	mA	
$\mathrm{I}_{\mathrm{DD} 4}$	Standby current (TTL)		$\begin{gathered} \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}} \\ \overline{\mathrm{WP}}=0 \mathrm{~V} / \mathrm{N}_{\mathrm{DD}} \end{gathered}$	-	-	1	mA	
			-	-	2	mA		
IDD5	Standby current (CMOS)			$\begin{gathered} \bar{E}=V_{D D}-0.2 \\ \overline{W P}=0 \mathrm{~V} / V_{D D} \end{gathered}$	-	10	50	$\mu \mathrm{A}$
			-		20	100	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {LI }}$	Input leakage current		$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {DD }}$ max	-	-	± 10	$\mu \mathrm{A}$	
ILO	Output leakage current		$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \text { to } \\ & \mathrm{V}_{\mathrm{DD}} \max \end{aligned}$	-	-	± 10	$\mu \mathrm{A}$	
V_{IH}	Input High voltage		-	2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
$\mathrm{V}_{\text {IL }}$	Input Low voltage		-	-0.3	-	0.8	V	
V_{OH}	Output High voltage level		$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	-	-	V	
V_{OL}	Output Low voltage level		$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	-	0.4	V	
$\mathrm{I}_{\mathrm{OL}}(\mathrm{R} \overline{\mathrm{B}})$	Output Low current (RE)		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	8	10		mA	
$\mathrm{V}_{\text {LKO }}$	$V_{D D}$ supply voltage (erase and program lockout)		-	-	-	1.7	V	

1. Leakage currents double on stacked devices.

Table 20. AC characteristics for command, address, data input

Symbol	Alt. Symbol	Parameter			$1.8 \mathrm{~V}$ Devices	$\begin{array}{\|c\|} \hline 3 \text { V } \\ \text { Devices } \end{array}$	Unit
$\mathrm{t}_{\text {ALLWL }}$	${ }^{\text {taLS }}$	Address Latch Low to Write Enable Low	AL Setup time	Min	0	0	ns
$\mathrm{t}_{\text {ALHWL }}$		Address Latch High to Write Enable Low					
$\mathrm{t}_{\text {CLHWL }}$	${ }^{\text {t }}$ LS	Command Latch High to Write Enable Low	CL Setup time	Min	0	0	ns
$\mathrm{t}_{\text {CLLWL }}$		Command Latch Low to Write Enable Low					
$\mathrm{t}_{\text {DVW }}$	t_{DS}	Data Valid to Write Enable High	Data Setup time	Min	20	20	ns
$t_{\text {ELWL }}$	t_{CS}	Chip Enable Low to Write Enable Low	\bar{E} Setup time	Min	0	0	ns
$t_{\text {WHALH }}$	$\mathrm{t}_{\text {ALH }}$	Write Enable High to Address Latch High	AL Hold time	Min	10	10	ns
$t_{\text {WHALL }}$		Write Enable High to Address Latch Low					
$\mathrm{t}_{\text {WHCLH }}$	$\mathrm{t}_{\text {cLH }}$	Write Enable High to Command Latch High	CL hold time	Min	10	10	ns
$\mathrm{t}_{\text {WHCLL }}$		Write Enable High to Command Latch Low					
$\mathrm{t}_{\text {WHDX }}$	$t_{\text {DH }}$	Write Enable High to Data Transition	Data Hold time	Min	10	10	ns
$\mathrm{t}_{\text {WHEH }}$	t_{CH}	Write Enable High to Chip Enable High	$\overline{\mathrm{E}}$ Hold time	Min	10	10	ns
$\mathrm{t}_{\text {WHWL }}$	${ }^{\text {WHH}}$	Write Enable High to Write Enable Low	\bar{W} High Hold time	Min	20	15	ns
$\mathrm{t}_{\text {WLW }}$	$t_{\text {WP }}$	Write Enable Low to Write Enable High	W Pulse Width	Min	40	$25^{(1)}$	ns
$t_{\text {WLWL }}$	$t_{\text {w }}$	Write Enable Low to Write Enable Low	Write Cycle time	Min	60	50	ns

1. If $\mathrm{t}_{\mathrm{ELWL}}$ is less than $10 \mathrm{~ns}, \mathrm{t}_{\mathrm{WLWH}}$ must be minimum 35 ns , otherwise, $\mathrm{t}_{\mathrm{WLWH}}$ may be minimum 25 ns .

Table 21. AC characteristics for operations ${ }^{(1)}$

Symbol	Alt. Symbol	Parameter			$\begin{array}{\|c\|} \hline 1.8 \mathrm{~V} \\ \text { Devices } \end{array}$	$\begin{array}{\|c\|} \hline 3 \text { V } \\ \text { Devices } \end{array}$	Unit
$\mathrm{t}_{\text {ALLRL1 }}$	$\mathrm{t}_{\text {AR }}$	Address Latch Low to Read Enable Low	Read electronic signature	Min	10	10	ns
$\mathrm{t}_{\text {ALLRL2 }}$			Read cycle	Min	10	10	ns
$\mathrm{t}_{\text {BHRL }}$	$t_{\text {RR }}$	Ready/Busy High to Read Enable Low		Min	20	20	ns
$\mathrm{t}_{\text {BLBH1 }}$		Ready/Busy Low to Ready/Busy High	Read Busy time, 128-Mbit, 256 Mbit, dual die	Max	12	12	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BLBH2 }}$	$\mathrm{t}_{\text {PROG }}$		Program Busy time	Max	500	500	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BLBH3 }}$	$\mathrm{t}_{\text {BERS }}$		Erase Busy time	Max	3	3	ms
$\mathrm{t}_{\text {BLBH4 }}$			Reset Busy time, during ready	Max	5	5	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WHBH1 }}$	$\mathrm{t}_{\text {RST }}$	Write Enable High to Ready/Busy High	Reset Busy time, during read	Max	5	5	$\mu \mathrm{s}$
			Reset Busy time, during program	Max	10	10	$\mu \mathrm{s}$
			Reset Busy time, during erase	Max	500	500	$\mu \mathrm{s}$
${ }^{\text {t CLLRL }}$	${ }^{\text {CLLR }}$	Command Latch Low to Read Enable Low		Min	10	10	ns
$\mathrm{t}_{\text {DZRL }}$	t_{IR}	Data Hi-Z to Read Enable Low		Min	0	0	ns
$\mathrm{t}_{\text {EHQZ }}$	${ }^{\text {cha }}$	Chip Enable High to Output Hi-Z		Max	20	20	ns
$\mathrm{t}_{\text {ELQV }}$	$\mathrm{t}_{\text {CEA }}$	Chip Enable Low to Output Valid		Max	45	45	ns
$\mathrm{t}_{\text {RHRL }}$	$\mathrm{t}_{\text {REH }}$	Read Enable High to Read Enable Low	Read Enable High Hold time	Min	15	15	ns
$\mathrm{t}_{\text {RHQZ }}$	$\mathrm{t}_{\mathrm{RHZ}}$	Read Enable High to Output Hi-Z		Max	30	30	ns
$\mathrm{T}_{\text {EHQX }}$	T_{OH}	Chip Enable high or Read Enable high to Output Hold		Min	10	10	ns
$\mathrm{T}_{\text {RHQX }}$							
$\mathrm{t}_{\text {RLRH }}$	t_{RP}	Read Enable Low to Read Enable High	Read Enable Pulse Width	Min	30	25	ns
$t_{\text {RLRL }}$	$t_{\text {RC }}$	Read Enable Low to Read Enable Low	Read Cycle time	Min	60	50	ns
$t_{\text {RLQV }}$	$t_{\text {REA }}$	Read Enable Low to Output Valid	Read Enable access time	Max	35	35	ns
			Read ES access time ${ }^{(1)}$				
$t_{\text {WHBH }}$	t_{R}	Write Enable High to Ready/Busy High	Read Busy time, 128-Mbit, 256Mbit dual die	Max	12	12	$\mu \mathrm{s}$
$t_{\text {WHBL }}$	$t_{\text {WB }}$	Write Enable High to Ready/Busy Low		Max	100	100	ns
$\mathrm{t}_{\text {WHRL }}$	$t_{\text {WHR }}$	Write Enable High to Read Enable Low		Min	80	60	ns
$\mathrm{t}_{\text {WLWL }}$	t_{wc}	Write Enable Low to Write Enable Low	Write Cycle time	Min	60	50	ns

1. $E S=$ electronic signature

Figure 21. Command latch AC waveforms

Figure 22. Address latch AC waveforms

Figure 23. Data input latch AC waveforms

Figure 24. Sequential data output after read AC waveforms

1. $\mathrm{CL}=$ Low, $\mathrm{AL}=$ Low, $\overline{\mathrm{W}}=$ High.

Figure 25. Read status register AC waveform

Figure 26. Read electronic signature AC waveform

1. Refer to Table 12: Electronic signature for the values of the manufacturer and device codes.

Figure 27. Page read A/read B operation AC waveform

Figure 28. Read C operation, one page AC waveform

[^2]Figure 29. Page program AC waveform

Figure 30. Block erase AC waveform

Figure 31. Reset AC waveform

10.1 Ready/busy signal electrical characteristics

Figures Figure 32, Figure 33, and Figure 34 show the electrical characteristics for the Ready/Busy signal. The value required for the resistor R_{P} can be calculated using the following equation:

$$
\mathrm{R}_{\mathrm{P}} \min =\frac{\left(\mathrm{V}_{\mathrm{DDmax}}-\mathrm{V}_{\mathrm{OLmax}}\right)}{\mathrm{I}_{\mathrm{OL}}+\mathrm{I}_{\mathrm{L}}}
$$

Therefore,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{P}} \min (1.8 \mathrm{~V})=\frac{1.85 \mathrm{~V}}{3 \mathrm{~mA}^{+} \mathrm{I}_{\mathrm{L}}} \\
& \mathrm{R}_{\mathrm{P}} \min (3 \mathrm{~V})=\frac{3.2 \mathrm{~V}}{8 \mathrm{~mA}^{+} \mathrm{I}_{\mathrm{L}}}
\end{aligned}
$$

where I_{L} is the sum of the input currents of all the devices tied to the Ready/Busy signal. R_{P} max is determined by the maximum value of t_{r}.

Figure 32. Ready/Busy AC waveform

Figure 33. Ready/busy load circuit

Figure 34. Resistor value versus waveform timings for Ready/Busy signal

1. $\mathrm{T}=25^{\circ} \mathrm{C}$.

10.2 Data protection

The Numonyx NAND device is designed to guarantee data protection during power transitions.
$A V_{D D}$ detection circuit disables all NAND operations, if $V_{D D}$ is below the $V_{L K O}$ threshold.
In the $V_{D D}$ range from $V_{L K O}$ to the lower limit of nominal range, the $\overline{W P}$ pin should be kept low $\left(\mathrm{V}_{\mathrm{IL}}\right)$ to guarantee hardware protection during power transitions as shown in the below figure.

Figure 35. Data protection

11 Package mechanical

To meet environmental requirements, Numonyx offers these devices in RoHS compliant packages, which have a lead-free second-level interconnect. The category of second-level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. RoHS compliant specifications are available at www.micron.com.

Figure 36. TSOP48-48 lead plastic thin small outline, $12 \times 20 \mathrm{~mm}$, package outline

1. Drawing is not to scale.

Table 22. TSOP48-48 lead plastic thin small outline, $12 \times 20 \mathrm{~mm}$, package mechanical data

Symbol	Millimeters			Inches		
	Typ	Min	Max	Typ	Min	Max
A	-	-	1.200	-	-	0.0472
A1	0.100	0.050	0.150	0.0039	0.0020	0.0059
A2	1.000	0.950	1.050	0.0394	0.0374	0.0413
B	0.220	0.170	0.270	0.0087	0.0067	0.0106
C	-	0.100	0.210	-	0.0039	0.0083
CP	-	-	0.080	-	-	0.0031
D1	12.000	11.900	12.100	0.4724	0.4685	0.4764
E	20.000	19.800	20.200	0.7874	0.7795	0.7953
E1	18.400	18.300	18.500	0.7244	0.7205	0.7283
e	0.500	-	-	0.0197	-	-
L	0.600	0.500	0.700	0.0236	0.0197	0.0276
L1	0.800	-	-	0.0315	-	-
a	3°	0°	5°	3°	0°	5°

Figure 37. VFBGA55 $8 \times 10 \mathrm{~mm}-6 \times 8$ active ball array, 0.80 mm pitch, package outline

1. Drawing is not to scale

Table 23. VFBGA $8 \times 10 \times 1.05 \mathrm{~mm}-6 \times 8+7$ ball array, 0.8 pitch, package mechanical data

Symbol	Millimeters			Inches		
	Typ	Min	Max	Typ	Min	Max
A	-	-	1.05	-	-	0.041
A1	-	0.25	-	-	0.010	-
A2	0.65	-	-	0.026	-	-
b	0.45	0.40	0.50	0.018	0.016	0.020
D	8.00	7.90	8.10	0.315	0.311	0.319
D1	4.00	-	-	0.157	-	-
D2	5.60	-	-	0.220	-	-
ddd	-	-	0.10	-	-	0.004
E	10.00	9.90	10.10	0.394	0.390	0.398
E1	5.60	-	-	0.220	-	-
E2	8.80	-	-	0.346	-	-
e		0.80			0.031	
FD	2.00	-	-	0.079	-	-
FD1	1.20	-	-	0.047	-	-
FE	2.20	-	-	0.087	-	-
FE1	0.60	-	-	0.024	-	-
SD		0.40			0.016	
SE		0.40			0.016	

12 Part numbering

Note: Not all combinations are necessarily available. For a list of available devices or for further information on any aspect of these products, please contact your nearest Numonyx sales office.

Table 24. Ordering information scheme

Device type
NAND flash memory
Density
$128=128$ Mbits
$256=256$ Mbits

Operating voltage

$\mathrm{W}=\mathrm{V}_{\mathrm{DD}}=2.7$ to 3.6 V

Bus width

3 = x8
$4=\times 16^{(1)}$
Family identifier
A = 528 bytes/264 word page
Device options
0 = No options (Chip Enable 'care'; sequential row read enabled)
2 = Chip Enable 'don't care' enabled
A = Automotive testing

Product version

A = first version
$B=$ second version
$C=$ third version
Package
$\mathrm{N}=$ TSOP48 $12 \times 20 \mathrm{~mm}$
$\mathrm{ZA}=\mathrm{VFBGA} 558 \times 10 \times 0.1 \mathrm{~mm}$
Temperature range
$6=-40$ to $85^{\circ} \mathrm{C}$
$\mathrm{X}=-40$ to $85^{\circ} \mathrm{C}$; Included in product longevity program (PLP)

Option

E = RoHS compliant package, standard packing
F = RoHS compliant package, tape and reel packing

1. x 16 organization only available for MCP.

Appendix A Hardware interface examples

NAND flash devices can be connected to a microcontroller system bus for code and data storage. For microcontrollers that have an embedded NAND controller the NAND flash can be connected without the addition of glue logic (see Figure 38). However, a minimum of glue logic is required for general purpose microcontrollers that do not have an embedded NAND controller. The glue logic usually consists of a flip-flop to hold the Chip Enable, Address Latch Enable, and Command Latch Enable signals stable during command and address latch operations, and some logic gates to simplify the firmware or make the design more robust.

Figure 39 provides an example of how to connect a NAND flash to a general purpose microcontroller. The additional OR gates allow the microcontroller's Output Enable and Write Enable signals to be used for other peripherals. The OR gate between A3 and CSn maps the flip-flop and NAND I/O in different address spaces inside the same chip select unit, which improves the setup and hold times and simplifies the firmware. The structure uses the microcontroller DMA (direct memory access) engines to optimize the transfer between the NAND flash and the system RAM.

For any interface with glue logic, the extra delay caused by the gates and flip-flop must be taken into account. This delay must be added to the microcontroller's AC characteristics and register settings to get the NAND flash setup and hold times.
For mass storage applications (hard disk emulations or systems where a huge amount of storage is required) NAND flash memories can be connected together to build storage modules (see Figure 40).

Figure 38. Connection to microcontroller, without glue logic

Figure 39. Connection to microcontroller, with glue logic

Figure 40. Building storage modules

13 Revision history

Table 25. Document revision history

Date	Ver.	Revision details
06-Jun-2003	1	First Issue
07-Aug-2003	2	Design Phase
27-Oct-2003	3	Engineering Phase
03-Dec-2003	4	Document promoted from Target Specification to Preliminary Data status. $\mathrm{V}_{C C}$ changed to V_{DD} and I_{CC} to I_{DD}. Changed title of Table 2 "Table 2.: Product description" and page program typical timing for NANDXXXR3A devices corrected. Table 1: NAND128-A and NAND256-A device summary, inserted on page 2.
13-Apr-2004	5	WSOP48 and VFBGA55 packages added, VFBGA63 ($9 \times 11 \times 1 \mathrm{~mm}$) removed. Figure 19., Cache Program Operation, modified and note 2 modified. Note removed for $\mathrm{t}_{\text {wLWH }}$ timing in Table 20: AC characteristics for command, address, data input. Meaning of $\mathrm{t}_{\text {BLBH4 }}$ modified, partly replaced by $\mathrm{t}_{\text {WHBH } 1}$ and $\mathrm{t}_{\text {WHRL }}$ min for 3 V devices modified in <Blue>Table 21., AC characteristics for operations. References removed from Section 13: Revision history section and reference made to ST Website instead. Figure 5: VFBGA55 connections, x8 devices (top view through package), Figure 6: VFBGA55 connections, x16 devices (top view through package), Figure 27: Page read A/read B operation AC waveform and Figure 30: Block erase AC waveform modified. Section 6.8: Read electronic signature clarified and Figure 26: Read electronic signature AC waveform, modified. Note 2 to Figure 28: Read C operation, one page AC waveform removed. Only 00h Pointer operations are valid before a Cache Program operation. Note added to Figure 30: Block erase AC waveform. Small text changes.
28-May-2004	6	TFBGA55 package added (mechanical data to be announced). 512Mb Dual Die devices added. Figure 19., Cache Program Operation modified. Package code changed for TFBGA63 $8.5 \times 15 \times 1.2 \mathrm{~mm}, 6 \times 8$ ball array, 0.8 mm pitch (1Gbit Dual Die devices) in Table 24: Ordering information scheme.
02-Jul-2004	7	Cache Program removed from document. TFBGA55 package specifications added (Figure 40., TFBGA55 $8 \times 10 \mathrm{~mm}-6 \times 8$ active ball array -0.80 mm pitch, Package Outline and Table 25., TFBGA55 8 x $10 \mathrm{~mm}-6 x 8$ active ball array -0.80 mm pitch, Package Mechanical Data). Test conditions modified for V_{OL} and V_{OH} parameters in <Blue> , .
01-Oct-2004	8	Section 6.5: Block erase last address cycle modified. Definition of a Bad Block modified in Section 7.1: Bad block management. RoHS compliance added to Section 1: Description. Figure 2: Logic block diagram modified. Document promoted from Preliminary Data to Full Datasheet status.

Table 25. Document revision history (continua)

Date	Ver.	Revision details
03-Dec-2004	9	Automatic Page 0 Read at Power-Up option no longer available. PC Demo board with simulation software removed from list of available development tools. Section 3.5: Chip Enable (E) paragraph clarified.
13-Dec-2004	10	$\mathrm{R}_{\text {ref }}$ parameter added to the description of the family clarified in the Section 1: Description.
25-Feb-2005	11	WSOP48 replaced with USOP48 package, VFBGA63 ($8.5 \times 15 \times 1 \mathrm{~mm}$) replaced with VFBGA63 ($9 \times 11 \times 1 \mathrm{~mm}$) package, TFBGA63 ($8.5 \times 15 \times 1 \mathrm{~mm}$) replaced with TFBGA63 ($9 \times 11 \times 1.2 \mathrm{~mm}$) package. Changes to Table 21: AC characteristics for operations.
$\begin{aligned} & \text { 23-June- } \\ & 2005 \end{aligned}$	12	$\mathrm{t}_{\text {ЕНВН, }}, \mathrm{t}_{\text {EHEL, }} \mathrm{t}_{\text {RHBL }}$ removed throughout document. TFBGA63 and TFBGA55 packages removed throughout document. Sequential Row Read removed throughout document. $\mathrm{T}_{\text {EHQX }}$ and $\mathrm{T}_{\mathrm{RHQX}}$ added throughout document. Section 10.2: Data protection section and Figure 20: Equivalent testing circuit for AC characteristics measurement added. Modified Section 3.7: Write Enable (W), Section 3.5: Chip Enable (E), Section 6.2: Read memory array, Section 6.3: Page program, Section 6.8: Read electronic signature, Section 7.1: Bad block management and Section 12: Part numbering. Figure 10: Read (A, B, C) operations and Figure 26: Read electronic signature AC waveform modified.
09-Aug-2005	13	Note added to Figure 3: TSOP48 connections, x8 devices and Figure 4: TSOP48 connections, x16 devices regarding the USOP package.
20-Jun-2008	14	Removed all information pertaining to the 512-Mbit and 1-Gbit devices. Applied Numonyx branding.
13-Aug-2008	15	Removed all the information pertaining the 1.8 V devices (VDD $=1.7$ to 1.95 V) and the USOP48 and VFBGA63 packages. Added the sequential row read option throughout the document.
30-Nov-2009	16	Added security features on the cover page and in Section 1: Description. Updated Figure 32: Ready/Busy AC waveform and Figure 34: Resistor value versus waveform timings for Ready/Busy signal. References to ECOPACK removed and replaced by RoHS compliance. Modified dimension A2 of the VFBGA55 package in Table 22. Added automotive testing option in Table 23: Ordering information scheme.
19-Oct-2012	17	Added $\mathrm{X}=-40$ to $85^{\circ} \mathrm{C}$; Included in product longevity program (PLP) under temperature range in ordering information scheme table.

Please Read Carefully:

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYXTM PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Numonyx may make changes to specifications and product descriptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for NAND Flash category:

Click to view products by Micron manufacturer:

Other Similar products are found below :
TC58BVG1S3HBAI6 EAN62827101 TC58NVG1S3HBAI4 MT29F256G08AUCABH3-10ITZ:A MT29F4G08ABADAWP-ITX:D
MT29F64G08AECABH1-10ITZ:A TH58NVG2S3HBAI4 S99ML04G10019 W29N02KVSIAF MT29F4G01ABAFDWB-IT:F
MT29F8G01ADAFD12-IT:F TR W25N01JWSFIT AS5F34G04SND-08LIN AS5F14G04SND-10LIN AS5F32G04SND-08LIN AS5F12G04SND-10LIN AS5F31G04SND-08LIN AS5F18G04SND-10LIN W25N02JWTBIF S34ML08G301TFI000 W25N02JWZEIC W25N02JWSFIF AS5F38G04SND-08LIN AT45DQ161-SSHF-B SST26WF080B-104I/MF SST26WF016B-104I/MF SST26VF064B104I/SO SST25VF512A-33-4I-SAE MT29F128G08AJAAAWP-ITZ:A MT29F2G08ABBEAH4-IT:E MT29F32G08CBADAWP:D SST26WF040B-104I/SN SST25WF040B-40I/SN SST25VF512A-33-4C-SAE SST25VF040B-50-4I-S2AE SST25VF010A-33-4I-SAE SST25LF020A-33-4I-SAE SST25WF080B-40I/SN AT17F16-30CU IS34ML01G084-TLI S34ML08G101BHA000 S34ML16G202BHI000 TH58NYG3S0HBAI4 S34MS16G202BHI000 IS37SML01G1-LLI IS34MW01G164-BLI IS34ML01G084-BLI IS34ML01G081-BLI S34ML01G100TFB000 S34ML01G200TFI900

[^0]: 1. x 16 organization only available for MCP.
[^1]: 1. Compatibility with lead-free soldering processes in accordance with ECOPACK 7191395 specifications. Not exceeding $250^{\circ} \mathrm{C}$ for more than 10 s , and peaking at $260^{\circ} \mathrm{C}$.
 2. Minimum voltage may undershoot to -2 V for less than 20 ns during transitions on input and I/O pins. Maximum voltage may overshoot to VDD +2 V for less than 20 ns during transitions on I/O pins.
[^2]: 1. $\mathrm{A} 0-\mathrm{A} 7$ is the address in the spare memory area, where $\mathrm{A} 0-\mathrm{A} 3$ are valid and $\mathrm{A} 4-\mathrm{A} 7$ are 'don't care'.
