

MULTILAYER CERAMIC CAPACITORS/AXIAL & RADIAL LEADED

Multilayer ceramic capacitors are available in a variety of physical sizes and configurations, including leaded devices and surface mounted chips. Leaded styles include molded and conformally coated parts with axial and radial leads. However, the basic capacitor element is similar for all styles. It is called a chip and consists of formulated dielectric materials which have been cast into thin layers, interspersed with metal electrodes alternately exposed on opposite

edges of the laminated structure. The entire structure is fired at high temperature to produce a monolithic block which provides high capacitance values in a small physical volume. After firing, conductive terminations are applied to opposite ends of the chip to make contact with the exposed electrodes. Termination materials and methods vary depending on the intended use.

TEMPERATURE CHARACTERISTICS

Ceramic dielectric materials can be formulated with a wide range of characteristics. The EIA standard for ceramic dielectric capacitors (RS-198) divides ceramic dielectrics into the following classes:

Class I: Temperature compensating capacitors, suitable for resonant circuit application or other applications where high Q and stability of capacitance characteristics are required. Class I capacitors have predictable temperature coefficients and are not affected by voltage, frequency or time. They are made from materials which are not ferro-electric, yielding superior stability but low volumetric efficiency. Class I capacitors are the most stable type available, but have the lowest volumetric efficiency.

Class II: Stable capacitors, suitable for bypass or coupling applications or frequency discriminating circuits where Q and stability of capacitance characteristics are not of major importance. Class II capacitors have temperature characteristics of \pm 15% or less. They are made from materials which are ferro-electric, yielding higher volumetric efficiency but less stability. Class II capacitors are affected by temperature, voltage, frequency and time.

Class III: General purpose capacitors, suitable for by-pass coupling or other applications in which dielectric losses, high insulation resistance and stability of capacitance characteristics are of little or no importance. Class III capacitors are similar to Class II capacitors except for temperature characteristics, which are greater than \pm 15%. Class III capacitors have the highest volumetric efficiency and poorest stability of any type.

KEMET leaded ceramic capacitors are offered in the three most popular temperature characteristics:

COG: Class I, with a temperature coefficient of 0 ± 30 ppm per degree C over an operating temperature range of - 55°C to + 125°C (Also known as "NP0").

X7R: Class II, with a maximum capacitance change of \pm 15% over an operating temperature range of - 55°C to + 125°C.

Z5U: Class III, with a maximum capacitance change of + 22% - 56% over an operating temperature range of + 10°C to + 85°C.

Specified electrical limits for these three temperature characteristics are shown in Table 1.

SPECIFIED ELECTRICAL LIMITS

Parameter	Temperature Characteristics			
i diameter	C0G	X7R	Z5U	
Dissipation Factor: Measured at following conditions. COG – 1 kHz and 1 vrms if capacitance >1000pF 1 MHz and 1 vrms if capacitance ≤ 1000 pF X7R – 1 kHz and 1 vrms* or if extended cap range 0.5 vrms Z5U – 1 kHz and 0.5 vrms	0.10%	2.5% (3.5% @ 25V)	4.0%	
Dielectric Stength: 2.5 times rated DC voltage.	Pass Subsequent IR Test			
Insulation Resistance (IR): At rated DC voltage, whichever of the two is smaller	1,000 MΩ–μF or 100 GΩ	1,000 MΩ–μF or 100 GΩ	1,000 MΩ-μF or 10 GΩ	
Temperature Characteristics: Range, °C Capacitance Change without DC voltage	-55 to +125 0 ± 30 ppm/°C	-55 to +125 ± 15%	+ 10 to +85 +22%,-56%	

^{*} MHz and 1 vrms if capacitance ≤ 100 pF on military product.

Table I

APPLICATION NOTES FOR MULTILAYER CERAMIC CAPACITORS

ELECTRICAL CHARACTERISTICS

The fundamental electrical properties of multilayer ceramic capacitors are as follows:

Polarity: Multilayer ceramic capacitors are not polar, and may be used with DC voltage applied in either direction.

Rated Voltage: This term refers to the maximum continuous DC working voltage permissible across the entire operating temperature range. Multilayer ceramic capacitors are not extremely sensitive to voltage, and brief applications of voltage above rated will not result in immediate failure. However, reliability will be reduced by exposure to sustained voltages above rated.

Capacitance: The standard unit of capacitance is the farad. For practical capacitors, it is usually expressed in microfarads (10-6 farad), nanofarads (10-9 farad), or picofarads (10⁻¹² farad). Standard measurement conditions are as follows:

Class I (up to 1,000 pF): 1MHz and 1.2 VRMS


maximum.

Class I (over 1,000 pF): 1kHz and 1.2 VRMS

maximum.

Class II: 1 kHz and 1.0 \pm 0.2 VRMS. Class III: 1 kHz and 0.5 \pm 0.1 VRMS.

Like all other practical capacitors, multilayer ceramic capacitors also have resistance and inductance. A simplified schematic for the equivalent circuit is shown in Figure 1. Other significant electrical characteristics resulting from these additional properties are as follows:

C = Capacitance

R_S = Equivalent Series Resistance (ESR)

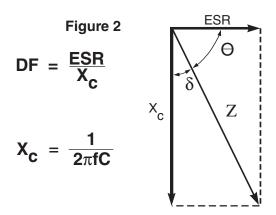
L = Inductance

R_D = Insulation Resistance (IR)

Impedance: Since the parallel resistance (Rp) is normally very high, the total impedance of the capacitor is:

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

Where Z = Total Impedance


RS = Equivalent Series Resistance

 X_{C} = Capacitive Reactance = $\frac{1}{2\pi fC}$

 X_1 = Inductive Reactance = $2\pi fL$

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Dissipation Factor: Dissipation Factor (DF) is a measure of the losses in a capacitor under AC application. It is the ratio of the equivalent series resistance to the capacitive reactance, and is usually expressed in percent. It is usually measured simultaneously with capacitance, and under the same conditions. The vector diagram in Figure 2 illustrates the relationship between DF, ESR, and impedance. The reciprocal of the dissipation factor is called the "Q", or quality factor. For convenience, the "Q" factor is often used for very low values of dissipation factor. DF is sometimes called the "loss tangent" or "tangent δ ", as derived from this diagram.

Insulation Resistance: Insulation Resistance (IR) is the DC resistance measured across the terminals of a capacitor, represented by the parallel resistance (Rp) shown in Figure 1. For a given dielectric type, electrode area increases with capacitance, resulting in a decrease in the insulation resistance. Consequently, insulation resistance is usually specified as the "RC" (IR x C) product, in terms of ohm-farads or megohm-microfarads. The insulation resistance for a specific capacitance value is determined by dividing this product by the capacitance. However, as the nominal capacitance values become small, the insulation resistance calculated from the RC product reaches values which are impractical. Consequently, IR specifications usually include both a minimum RC product and a maximum limit on the IR calculated from that value. For example, a typical IR specification might read "1,000 megohm-microfarads or 100 gigohms, whichever is less."

Insulation Resistance is the measure of a capacitor to resist the flow of DC leakage current. It is sometimes referred to as "leakage resistance." The DC leakage current may be calculated by dividing the applied voltage by the insulation resistance (Ohm's Law).

Dielectric Withstanding Voltage: Dielectric withstanding voltage (DWV) is the peak voltage which a capacitor is designed to withstand for short periods of time without damage. All KEMET multilayer ceramic capacitors will withstand a test voltage of 2.5 x the rated voltage for 60 seconds.

KEMET specification limits for these characteristics at standard measurement conditions are shown in Table 1 on page 4. Variations in these properties caused by changing conditions of temperature, voltage, frequency, and time are covered in the following sections.

APPLICATION NOTES FOR MULTILAYER CERAMIC CAPACITORS

TABLE 1 EIA TEMPERATURE CHARACTERISTIC CODES FOR CLASS I DIELECTRICS

Significar of Temp Coeffi	erature to Tem		Multiplier Applied to Temperature Coefficient		nce of rature ient *
PPM per Degree C	Letter Symbol	Multi- plier	Number Symbol	PPM per Degree C	Letter Symbol
0.0	C	-1	0	±30	G
0.3	В	-10	1	±60	Н
0.9	Α	-100	2	±120	J
1.0	M	-1000	3	±250	K
1.5	Р	-100000	4	±500	L
2.2	R	+1	5	±1000	M
3.3	S	+10	6	±2500	Ν
4.7	Τ	+100	7		
7.5	U	+1000	8		
		+10000	9		

^{*} These symetrical tolerances apply to a two-point measurement of temperature coefficient: one at 25°C and one at 85°C. Some deviation is permitted at lower temperatures. For example, the PPM tolerance for COG at -55°C is +30 / -72 PPM.

TABLE 2 EIA TEMPERATURE CHARACTERISTIC CODES FOR CLASS II & III DIELECTRICS

Low Tem Rat	•	High Temperature Rating		Maximum Ca Shif	•
Degree Celcius	Letter Symbol	Degree Celcius	Number Symbol	Percent	Letter Symbol
+10C	Z	+45C	2	±1.0%	A
-30C	Υ	+65C	4	±1.5%	В
-55C	Χ	+85C	5	±2.2%	С
		+105C	6	±3.3%	D
		+125C	7	±4.7%	Е
		+150C	8	±7.5%	F
		+200C	9	±10.0%	Р
				±15.0%	R
				±22.0%	S
			-	+22/-33%	T
				+22/-56%	U
			-	+22/-82%	V

EFFECT OF TEMPERATURE

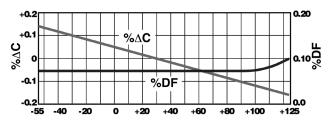


Figure 3. Temperature °C Capacitance & DF vs Temperature - C0G

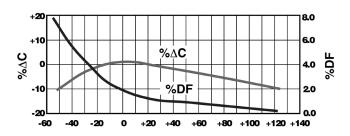


Figure 4. Temperature °C Capacitance & DF vs Temperature - X7R

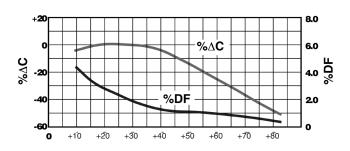


Figure 5. Temperature °C Capacitance & DF vs Temperature - Z5U

APPLICATION NOTES FOR MULTILAYER CERAMIC CAPACITORS

EFFECT OF APPLIED VOLTAGE

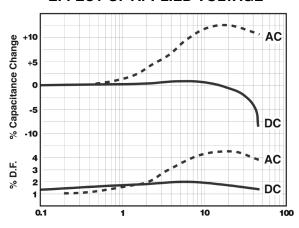


Figure 6. AC or DC Volts Applied

Typical Effects of 1000 Hz AC and DC Voltage Level on

Capacitance and Dissipation Factor - X7R

Note: COG Dielectric capacitance and dissipation factor are stable with voltage.

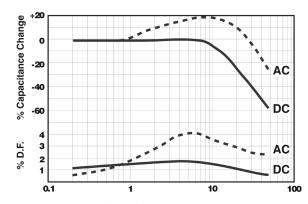


Figure 7. AC or DC Volts Applied

Typical Effects of 1000 Hz AC and DC Voltage Level on

Capacitance and Dissipation Factor - Z5U

Note: COG Dielectric capacitance and dissipation factor are stable with voltage.

Effect of Temperature: Both capacitance and dissipation factor are affected by variations in temperature. The maximum capacitance change with temperature is defined by the temperature characteristic. However, this only defines a "box" bounded by the upper and lower operating temperatures and the minimum and maximum capacitance values. Within this "box", the variation with temperature depends upon the specific dielectric formulation. Typical curves for KEMET capacitors are shown in Figures 3, 4, and 5. These figures also include the typical change in dissipation factor for KEMET capacitors.

Insulation resistance decreases with temperature. Typically, the insulation resistance at maximum rated temperature is 10% of the 25°C value.

Effect of Voltage: Class I ceramic capacitors are not affected by variations in applied AC or DC voltages. For Class II and III ceramic capacitors, variations in voltage affect only the capacitance and dissipation factor. The application of DC voltage higher than 5 vdc reduces both the capacitance and dissipation factor. The application of AC voltages up to 10-20 Vac tends to increase both capacitance and dissipation factor.

At higher AC voltages, both capacitance and dissipation factor begin to decrease.

Typical curves showing the effect of applied AC and DC voltage are shown in Figure 6 for KEMET X7R capacitors and Figure 7 for KEMET Z5U capacitors.

Effect of Frequency: Frequency affects both capacitance and dissipation factor. Typical curves for KEMET multilayer ceramic capacitors are shown in Figures 8 and 9.

The variation of impedance with frequency is an important consideration in the application of multilayer ceramic capacitors. Total impedance of the capacitor is the vector of the capacitive reactance, the inductive reactance, and the ESR, as illustrated in Figure 2. As frequency increases, the capacitive reactance decreases. However, the series inductance (L) shown in Figure 1 produces inductive reactance, which increases with frequency. At some frequency, the impedance ceases to be capacitive and becomes inductive. This point, at the bottom of the V-shaped impedance versus frequency curves, is the self-resonant frequency. At the self-resonant frequency, the reactance is zero, and the impedance consists of the ESR only.

Typical impedance versus frequency curves for KEMET multilayer ceramic capacitors are shown in Figures 10, 11, and 12. These curves apply to KEMET capacitors in chip form, without leads. Lead configuration and lead length have a significant impact on the series inductance. The lead inductance is approximately 10nH/inch, which is large compared to the inductance of the chip. The effect of this additional inductance is a decrease in the self-resonant frequency, and an increase in impedance in the inductive region above the self-resonant frequency.

Effect of Time: The capacitance of Class II and III dielectrics change with time as well as with temperature, voltage and frequency. This change with time is known as "aging." It is caused by gradual realignment of the crystalline structure of the ceramic dielectric material as it is cooled below its Curie temperature, which produces a loss of capacitance with time. The aging process is predictable and follows a logarithmic decay. Typical aging rates for COG, X7R, and Z5U dielectrics are as follows:

C0G	None
X7R	2.0% per decade of time
Z5U	5.0% per decade of time

Typical aging curves for X7R and Z5U dielectrics are shown in Figure 13.

The aging process is reversible. If the capacitor is heated to a temperature above its Curie point for some period of time, de-aging will occur and the capacitor will regain the capacitance lost during the aging process. The amount of deaging depends on both the elevated temperature and the length of time at that temperature. Exposure to 150°C for one-half hour or 125°C for two hours is usually sufficient to return the capacitor to its initial value.

Because the capacitance changes rapidly immediately after de-aging, capacitance measurements are usually delayed for at least 10 hours after the de-aging process, which is often referred to as the "last heat." In addition, manufacturers utilize the aging rates to set factory test limits which will bring the capacitance within the specified tolerance at some future time, to allow for customer receipt and use. Typically, the test limits are adjusted so that the capacitance will be within the specified tolerance after either 1,000 hours or 100 days, depending on the manufacturer and the product type.

APPLICATION NOTES FOR MULTILAYER CERAMIC CAPACITORS

POWER DISSIPATION

Power dissipation has been empirically determined for two representative KEMET series: C052 and C062. Power dissipation capability for various mounting configurations is shown in Table 3. This table was extracted from Engineering Bulletin F-2013, which provides a more detailed treatment of this subject.

Note that no significant difference was detected between the two sizes in spite of a 2 to 1 surface area ratio. Due to the materials used in the construction of multilayer ceramic capacitors, the power dissipation capability does not depend greatly on the surface area of the capacitor body, but rather on how well heat is conducted out of the capacitor lead wires. Consequently, this power dissipation capability is applicable to other leaded multilayer styles and sizes.

TABLE 3
POWER DISSIPATION CAPABILITY
(Rise in Celsius degrees per Watt)

Mounting Configuration	Power Dissipation of C052 & C062
1.00" leadwires attached to binding post of GR-1615 bridge (excellent heat sink)	90 Celsius degrees rise per Watt ±10%
0.25" leadwires attached to binding post of GR-1615 bridge	55 Celsius degrees rise per Watt ±10%
Capacitor mounted flush to 0.062" glass- epoxy circuit board with small copper traces	77 Celsius degrees rise per Watt ±10%
Capacitor mounted flush to 0.062" glass- epoxy circuit board with four square inches of copper land area as a heat sink	53 Celsius degrees rise per Watt ±10%

As shown in Table 3, the power dissipation capability of the capacitor is very sensitive to the details of its use environment. The temperature rise due to power dissipation should not exceed 20°C. Using that constraint, the maximum permissible power dissipation may be calculated from the data provided in Table 3.

It is often convenient to translate power dissipation capability into a permissible AC voltage rating. Assuming a sinusoidal wave form, the RMS "ripple voltage" may be calculated from the following formula:

$$E = Z \times \sqrt{\frac{P_{MAX}}{R}}$$

Where E = RMS Ripple Voltage (volts)

P = Power Dissipation (watts)

Z = Impedance

R = ESR

The data necessary to make this calculation is included in Engineering Bulletin F-2013. However, the following criteria must be observed:

- 1. The temperature rise due to power dissipation should be limited to 20°C.
- The peak AC voltage plus the DC voltage must not exceed the maximum working voltage of the capacitor.

Provided that these criteria are met, multilayer ceramic

capacitors may be operated with AC voltage applied without need for DC bias.

RELIABILITY

A well constructed multilayer ceramic capacitor is extremely reliable and, for all practical purposes, has an infinite life span when used within the maximum voltage and temperature ratings. Capacitor failure may be induced by sustained operation at voltages that exceed the rated DC voltage, voltage spikes or transients that exceed the dielectric withstanding voltage, sustained operation at temperatures above the maximum rated temperature, or the excessive temperature rise due to power dissipation.

Failure rate is usually expressed in terms of percent per 1,000 hours or in FITS (failure per billion hours). Some KEMET series are qualified under U.S. military established reliability specifications MIL-PRF-20, MIL-PRF-123, MIL-PRF-39014, and MIL-PRF-55681. Failure rates as low as 0.001% per 1,000 hours are available for all capacitance / voltage ratings covered by these specifications. These specifications and accompanying Qualified Products List should be consulted for details.

For series not covered by these military specifications, an internal testing program is maintained by KEMET Quality Assurance. Samples from each week's production are subjected to a 2,000 hour accelerated life test at 2 x rated voltage and maximum rated temperature. Based on the results of these tests, the average failure rate for all non-military series covered by this test program is currently 0.06% per 1,000 hours at maximum rated conditions. The failure rate would be much lower at typical use conditions. For example, using MIL-HDBK-217D this failure rate translates to 0.9 FITS at 50% rated voltage and 50°C.

Current failure rate details for specific KEMET multilayer ceramic capacitor series are available on request.

MISAPPLICATION

Ceramic capacitors, like any other capacitors, may fail if they are misapplied. Typical misapplications include exposure to excessive voltage, current or temperature. If the dielectric layer of the capacitor is damaged by misapplication the electrical energy of the circuit can be released as heat, which may damage the circuit board and other components as well.

If potential for misapplication exists, it is recommended that precautions be taken to protect personnel and equipment during initial application of voltage. Commonly used precautions include shielding of personnel and sensing for excessive power drain during board testing.

STORAGE AND HANDLING

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp, and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40° C, and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts, and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability, chip stock should be used promptly, preferably within 1.5 years of receipt.

APPLICATION NOTES FOR MULTILAYER CERAMIC CAPACITORS

Figure 8. Frequency - Hertz
Capacitance & DF vs Frequency - C0G

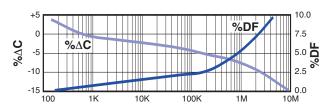


Figure 9. Frequency - Hertz
Capacitance & DF vs Frequency - X7R & Z5U

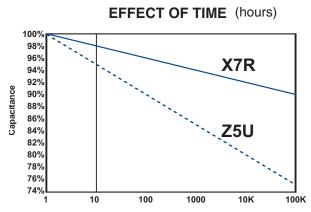


Figure 13. Typical Aging Rates for X7R & Z5U

IMPEDANCE VS FREQUENCY

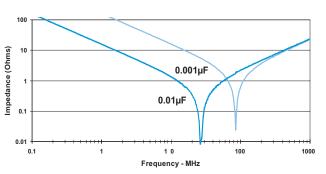


Figure 10. Impedance vs Frequency for C0G Dielectric

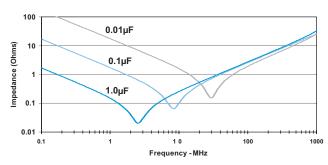


Figure 11. Impedance vs Frequency for X7R Dielectric

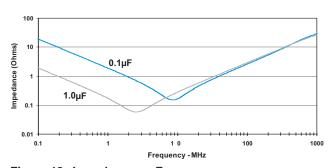


Figure 12. Impedance vs Frequency for Z5U Dielectric

Ceramic Molded xial/Radial - Standar

CERAMIC MOLDED AXIAL & RADIAL

PERFORMANCE CHARACTERISTICS

GENERAL SPECIFICATIONS

Working Voltage:

C0G - 50, 100, 200 X7R - 50, 100, 200

Temperature Characteristics:

COG 0 ±30 PPM / °C from -55°C to +125°C X7R ± 15% from -55°C to +125°C

Capacitance Tolerance:

COG ±0.5pF, ±1%, ±2%, ±5%, ±10%, ±20% (±0.5pF is tightest tolerance available) X7R ±10%, ±20%, -0 +100%, +80% / -20%

Construction:

Monolithic block of ceramic dielectric with Interdigitated internal electrodes, encapsulated in a molded case, and having axial or radial leads. Meets flame test requirements of UL Standard 94V-0.

Lead Material:

Axial: Solder coated copper clad steel Radial: Solder-coated copper standard (100% tin plated optional)

Solderability:

MIL-STD-202, Method 208, Sn62 solder, 245°C for $5 \pm 1/2$ seconds.

Terminal Strength:

EIA-198 Method 303, Condition A (2.2 kg)

ELECTRICAL

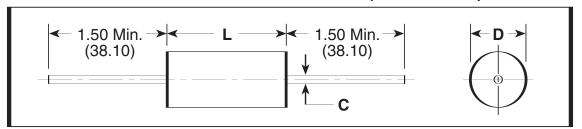
Capacitance:

Within specified tolerance and when measured with 1 volt rms at 1kHz (1000 pF or less at 1 MHz for C0G).

Dissipation Factor @25°C:

25°C at 1kHz (1000 pF or less at 1 MHz for C0G). C0G – 0.15% maximum X7R – 2.5% maximum

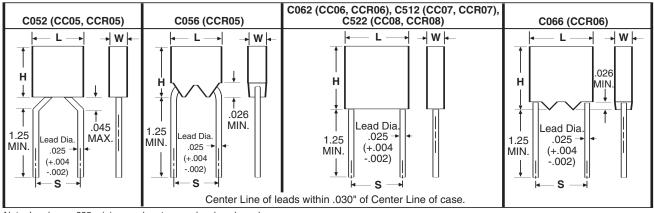
Insulation Resistance:


After 2 minutes electrification at 25°C and rated voltage C0G – 100K M Ω or 1000 M Ω – μ F, whichever is less. X7R – 100K M Ω or 1000 M Ω – μ F, whichever is less.

Dielectric Withstanding Voltage:

250% of rated voltage for 5 seconds with current limited to 50 mA at 25°C.

CERAMIC MOLDED/AXIAL & RADIAL — MIL-PRF-20


CAPACITOR OUTLINE DRAWINGS (AXIAL LEADS)

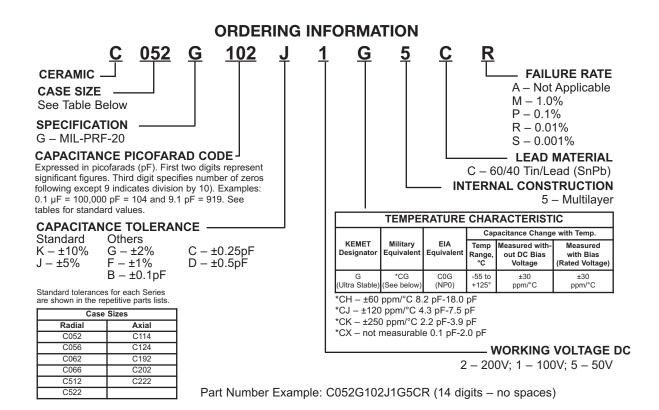
DIMENSIONS — INCHES (MILLIMETERS)

Case Size	Military Equivalent Styles	L Length	D Body Diameter	C Lead Diameter
C114	CC75, CCR75	.160 ± .010 (4.06 ± .25)	.090 ± .010 (2.29 ± .25)	.020, +.000,003 (.51, +.00,08)
C124	CC76, CCR76	.250 ± .010 (6.35 ± .25)	.090 ± .010 (2.29 ± .25)	.020, +.000,003 (.51, +.00,08)
C192	CC77, CCR77	.390 ± .010 (9.91 ± .25)	.140 ± .010 (3.56 ± .25)	.025, +.004,001 (.64, +.10,025)
C202	CC78, CCR78	.500 ± .020 (12.70 ± .51)	.250 ± .015 (6.35 ± .38)	.025, +.004,001 (.64, +.10,025)
C222	CC79, CCR79	.690 ± .020 (17.53 ± .51)	.350 ± .015 (8.89 ± .38)	.025, +.004,001 (.64, +.10,025)

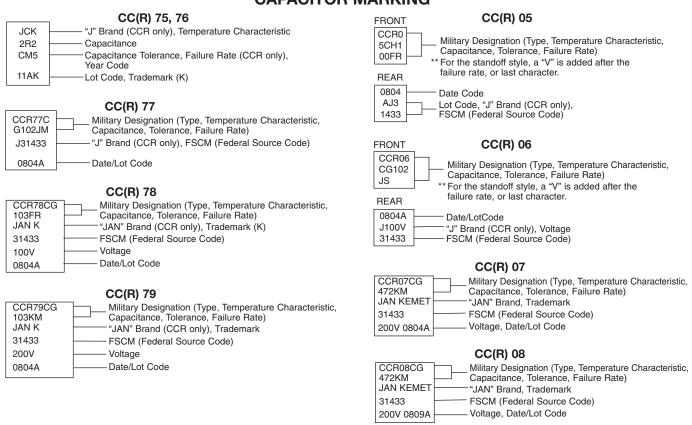
CAPACITOR OUTLINE DRAWINGS (RADIAL LEADS)

Note: Leads are .625 minimum when tape and reel packaged

DIMENSIONS — INCHES (MILLIMETERS)


Case Size	Military Equivalent Styles	H Height	L Length	W Width	S Lead Spacing
C052/ C056	CC05, CCR05	.190 ± .010 (4.83 ± .25)	.190 ± .010 (4.83 ± .25)	.090 ± .010 (2.29 ± .25)	.200 ± .015 (5.08 ± .38)
C062/ C066	CC06, CCR06	.290 ± .010 (7.37 ± .25)	.290 ± .010 (7.37 ± .25)	.090 ± .010 (2.29 ± .25)	.200 ± .015 (5.08 ± .38)
C512	CC07, CCR07	.480 ± .020 (12.19 ± .51)	.480 ± .020 (12.19 ± .51)	*.140 ± .010 (3.56 ± .25)	.400 ± .020 (10.16 ± .51)
C522	CC08, CCR08	.480 ± .020 (12.19 ± .51)	.480 ± .020 (12.19 ± .51)	.240 ± .010 (6.10 ± .25)	.400 ± .020 (10.16 ± .51)

^{* 0.200 (5.08)} maximum for 100,000 pF only.


For packaging information, see pages 46, 47, and 48.

34

CERAMIC MOLDED/AXIAL & RADIAL — MIL-PRF-20

CAPACITOR MARKING

CERAMIC MOLDED/AXIAL — MIL-PRF-20 ULTRA-STABLE TEMPERATURE CHARACTERISTIC — CG (EIA-COG)

RATINGS & PART NUMBER REFERENCE

	2.2						
CAP.	KEMET	MILITARY	MILITARY				
pF	PART NUMBER	STYLE CC	STYLE CCR				
	200 VOLT - C114 (CC						
1.0	C114G109(2)2G5C(1)	CC75CX1R0(2)	CCR75CX1R0(<u>2</u>)(<u>1</u>)				
1.1	C114G119(<u>2</u>)2G5C(<u>1</u>)	CC75CX1R1(2)	CCR75CX1R1(2)(1)				
1.2	C114G129(<u>2</u>)2G5C(<u>1</u>)	CC75CX1R2(<u>2</u>)	CCR75CX1R2(2)(1)				
1.3	C114G139(<u>2</u>)2G5C(<u>1</u>)	CC75CX1R3(<u>2</u>)	CCR75CX1R3(<u>2)(1</u>)				
1.5	C114G159(<u>2</u>)2G5C(<u>1</u>)	CC75CX1R5(<u>2</u>)	CCR75CX1R5(2)(1)				
1.6	C114G169(<u>2</u>)2G5C(<u>1</u>)	CC75CX1R6(<u>2</u>)	CCR75CX1R6(2)(1)				
1.8	C114G189(<u>2</u>)2G5C(<u>1</u>)	CC75CX1R8(<u>2</u>)	CCR75CX1R8(<u>2</u>)(<u>1</u>)				
2.0	C114G209(<u>2</u>)2G5C(<u>1</u>)	CC75CX2R0(<u>2</u>)	CCR75CX2R0(2)(1)				
2.2	C114G229(2)2G5C(1)	CC75CK2R2(<u>2</u>)	CCR75CK2R2(<u>2</u>)(<u>1</u>)				
2.4	C114G249(<u>2</u>)2G5C(<u>1</u>)	CC75CK2R4(<u>2</u>)	CCR75CK2R4(2)(1)				
2.7	C114G279(3)2G5C(1)	CC75CK2R7(3)	CCR75CK2R7(3)(1)				
3.0	C114G309(3)2G5C(1)	CC75CK3R0(<u>3</u>)	CCR75CK3R0(3)(1)				
3.3	C114G339(3)2G5C(1)	CC75CK3R3(3)	CCR75CK2R3(3)(1)				
3.6	C114G369(3)2G5C(1)	CC75CK3R6(3)	CCR75CK3R6(3)(1)				
3.9	C114G399(3)2G5C(1)	CC75CK3R9(3)	CCR75CK3R9(3)(1)				
4.3	C114G439(3)2G5C(1)	CC75CJ4R3(<u>3</u>)	CCR75CJ4R3(3)(1)				
4.7	C114G479(3)2G5C(1)	CC75CJ4R7(<u>3</u>)	CCR75CJ4R7(3)(1)				
5.1	C114G519(3)2G5C(1)	CC75CJ5R1(3)	CCR75CJ5R1(3)(1)				
5.6	C114G569(3)2G5C(1)	CC75CJ5R6(3)	CCR75CJ5R6(3)(1)				
6.2	C114G629(3)2G5C(1)	CC75CJ6R2(3)	CCR75CJ6R2(3)(1)				
6.8	C114G689(3)2G5C(1)	CC75CJ6R8(3)	CCR75CJ6R8(3)(1)				
7.5	C114G759(3)2G5C(1)	CC75CJ7R5(3)	CCR75CJ7R5(3)(1)				
8.2	C114G829(3)2G5C(1)	CC75CH8R2(3)	CCR75CH8R2(3)(1)				
9.1	C114G919(3)2G5C(1)	CC75CH9R1(3)	CCR75CH9R1(3)(1)				
10.0	C114G100(<u>4</u>)2G5C(<u>1</u>)	CC75CH100(4)	CCR75CH100(4)(1)				
11.0	C114G110(4)2G5C(1)	CC75CH110(<u>4</u>)	CCR75CH110(4)(1)				
12.0	C114G120(<u>4</u>)2G5C(<u>1</u>)	CC75CH120(<u>4</u>)	CCR75CH120(4)(1)				
13.0	C114G130(<u>4</u>)2G5C(<u>1</u>)	CC75CH130(4)	CCR75CH130(4)(1)				
15.0	C114G140(<u>4</u>)2G5C(<u>1</u>)	CC75CH140(<u>4</u>)	CCR75CH140(4)(1)				
16.0	C114G160(<u>4</u>)2G5C(<u>1</u>)	CC75CH160(<u>4</u>)	CCR75CH160(4)(1)				
18.0	C114G180(<u>4</u>)2G5C(<u>1</u>)	CC75CH180(<u>4</u>)	CCR75CH180(4)(1)				
20.0	C114G200(<u>4</u>)2G5C(<u>1</u>)	CC75CG200(<u>4</u>)	CCR75CG200(4)(1)				
22.0	C114G220(<u>4</u>)2G5C(<u>1</u>)	CC75CG220(<u>4</u>)	CCR75CG220(4)(1)				
24.0	C114G240(<u>4</u>)2G5C(<u>1</u>)	CC75CG240(<u>4</u>)	CCR75CG240(4)(1)				
27.0	C114G270(<u>4</u>)2G5C(<u>1</u>)	CC75CG270(<u>4</u>)	CCR75CG270(4)(1)				
30.0	C114G300(<u>4</u>)2G5C(<u>1</u>)	CC75CG300(<u>4</u>)	CCR75CG300(4)(1)				
33.0	C114G330(<u>4</u>)2G5C(<u>1</u>)	CC75CG330(<u>4</u>)	CCR75CG330(4)(1)				
36.0	C114G360(<u>4</u>)2G5C(<u>1</u>)	CC75CG360(<u>4</u>)	CCR75CG360(4)(1)				
39.0	C114G390(<u>4</u>)2G5C(<u>1</u>)	CC75CG390(<u>4</u>)	CCR75CG390(<u>4</u>)(<u>1</u>)				
43.0	C114G430(<u>4</u>)2G5C(<u>1</u>)	CC75CG430(<u>4</u>)	CCR75CG430(4)(1)				
47.0	C114G470(<u>4</u>)2G5C(<u>1</u>)	CC75CG470(<u>4</u>)	CCR75CG470(4)(1)				
51.0	C114G510(<u>4</u>)2G5C(<u>1</u>)	CC75CG510(<u>4</u>)	CCR75CG510(4)(1)				
56.0	C114G560(<u>4</u>)2G5C(<u>1</u>)	CC75CG560(<u>4</u>)	CCR75CG560(4)(1)				
62.0	C114G620(<u>4</u>)2G5C(<u>1</u>)	CC75CG620(<u>4</u>)	CCR75CG620(<u>4</u>)(<u>1</u>)				
68.0	C114G680(<u>4</u>)2G5C(<u>1</u>)	CC75CG680(<u>4</u>)	CCR75CG680(4)(1)				
75.0	C114G750(<u>4</u>)2G5C(<u>1</u>)	CC75CG750(<u>4</u>)	CCR75CG750(4)(1)				

OMBER	REFERENCE		
CAP. pF	KEMET PART NUMBER	MILITARY STYLE CC	MILITARY STYLE CCR
	100 VOLT - C114 (CC		
82.0	C114G820(4)1G5C(1)	CC75CG820(4)	CCR75CG820(4)(1)
91.0	C114G910(4)1G5C(1)	CC75CG910(4)	CCR75CG910(4)(1)
100.0	C114G101(4)1G5C(1)	CC75CG101(4)	CCR75CG101(4)(1)
110.0	C114G111(4)1G5C(1)	CC75CG111(4)	CCR75CG111(4)(1)
120.0	C114G121(4)1G5C(1)	CC75CG121(4)	CCR75CG121(4)(1)
130.0	C114G131(<u>4</u>)1G5C(<u>1</u>)	CC75CG131(<u>4</u>)	CCR75CG131(4)(1)
150.0	C114G151(4)1G5C(1)	CC75CG151(4)	CCR75CG151(4)(1)
160.0	C114G161(<u>4</u>)1G5C(<u>1</u>)	CC75CG161(<u>4</u>)	CCR75CG161(4)(1)
180.0	C114G181(<u>4</u>)1G5C(<u>1</u>)	CC75CG181(<u>4</u>)	CCR75CG181(<u>4</u>)(<u>1</u>)
200.0	C114G201(<u>4</u>)1G5C(<u>1</u>)	CC75CG201(<u>4</u>)	CCR75CG201(<u>4</u>)(<u>1</u>)
220.0	C114G221(<u>4</u>)1G5C(<u>1</u>)	CC75CG221(<u>4</u>)	CCR75CG221(<u>4</u>)(<u>1</u>)
240.0	C114G241(<u>4</u>)1G5C(<u>1</u>)	CC75CG241(<u>4</u>)	CCR75CG241(<u>4</u>)(<u>1</u>)
	50 VOLT - C114 (CC)	,	
270.0	C114G271(<u>4</u>)5G5C(1)	CC75CG271(<u>4</u>)	CCR75CG271(<u>4</u>)(<u>1</u>)
300.0	C114G301(<u>4</u>)5G5C(1)	CC75CG301(<u>4</u>)	CCR75CG301(<u>4</u>)(<u>1</u>)
330.0	C114G331(<u>4</u>)5G5C(1)	CC75CG331(<u>4</u>)	CCR75CG331(<u>4</u>)(<u>1</u>)
360.0	C114G361(<u>4</u>)5G5C(1)	CC75CG361(<u>4</u>)	CCR75CG361(<u>4</u>)(<u>1</u>)
390.0	C114G391(<u>4</u>)5G5C(1)	CC75CG391(<u>4</u>)	CCR75CG391(<u>4</u>)(<u>1</u>)
430.0	C114G431(<u>4</u>)5G5C(1)	CC75CG431(<u>4</u>)	CCR75CG431(<u>4</u>)(<u>1</u>)
470.0 510.0	C114G471(<u>4</u>)5G5C(1)	CC75CG471(<u>4</u>) CC75CG511(4)	CCR75CG471(<u>4</u>)(<u>1</u>)
560.0	C114G511(<u>4</u>)5G5C(1) C114G561(4)5G5C(1)	CC75CG511(<u>4</u>) CC75CG561(4)	CCR75CG511(<u>4</u>)(<u>1</u>) CCR75CG561(<u>4</u>)(<u>1</u>)
620.0	C114G621(<u>4</u>)5G5C(1)	CC75CG501(4)	CCR75CG501(<u>4</u>)(<u>1</u>) CCR75CG621(<u>4</u>)(<u>1</u>)
680.0	C114G681(<u>4</u>)5G5C(1)	CC75CG681(<u>4</u>)	CCR75CG621(<u>4)(1)</u> CCR75CG681(<u>4)(1)</u>
- 000.0	200 VOLT - C124 (CC		
82.0	C124G820(4)2G5C(1)	CC76CG820(4)	CCR76CG820(4)(1)
91.0	C124G920(4)2G5C(1)	CC76CG820(<u>4</u>) CC76CG910(4)	CCR76CG820(4)(1) CCR76CG910(4)(1)
100.0	C124G101(<u>4</u>)2G5C(1)	CC76CG101(4)	CCR76CG101(<u>4</u>)(<u>1</u>)
110.0	C124G111(4)2G5C(1)	CC76CG111(4)	CCR76CG111(4)(1)
120.0	C124G121(<u>4</u>)2G5C(1)	CC76CG121(4)	CCR76CG121(<u>4</u>)(<u>1</u>)
130.0	C124G131(4)2G5C(1)	CC76CG131(<u>4</u>)	CCR76CG131(<u>4</u>)(<u>1</u>)
	100 VOLT - C124 (CC	(R)76 PER MIL-PRF-	20/28)
270.0	C124G271(4)1G5C(1)	CC76CG271(4)	CCR76CG271(<u>4</u>)(<u>1</u>)
300.0	C124G301(<u>4</u>)1G5C(1)	CC76CG301(<u>4</u>)	CCR76CG301(4)(1)
330.0	C124G331(4)1G5C(1)	CC76CG331(4)	CCR76CG331(4)(1)
360.0	C124G361(4)1G5C(1)	CC76CG361(<u>4</u>)	CCR76CG361(4)(1)
390.0	C124G391(<u>4</u>)1G5C(1)	CC76CG391(<u>4</u>)	CCR76CG391(<u>4</u>)(<u>1</u>)
430.0	C124G431(<u>4</u>)1G5C(1)	CC76CG431(<u>4</u>)	CCR76CG431(<u>4</u>)(<u>1</u>)
470.0	C124G471(<u>4</u>)1G5C(1)	CC76CG471(<u>4</u>)	CCR76CG471(<u>4</u>)(<u>1</u>)
510.0	C124G511(<u>4</u>)1G5C(1)	CC76CG511(<u>4</u>)	CCR76CG511(<u>4</u>)(<u>1</u>)
560.0	C124G561(<u>4</u>)1G5C(1)	CC76CG561(<u>4</u>)	CCR76CG561(<u>4</u>)(<u>1</u>)
620.0	C124G621(<u>4</u>)1G5C(1)	CC76CG621(<u>4</u>) CC76CG681(<u>4</u>)	CCR76CG621(<u>4</u>)(<u>1</u>)
680.0	C124G681(<u>4</u>)1G5C(1)		CCR76CG681(<u>4</u>)(<u>1</u>)
750.0	50 VOLT - C124 (CC)	, ,	•
750.0	C124G751(<u>4</u>)5G5C(1)	CC76CG751(<u>4</u>)	CCR76CG751(<u>4</u>)(<u>1</u>)
820.0	C124G821(<u>4</u>)5G5C(1)	CC76CG821(<u>4</u>)	CCR76CG821(<u>4</u>)(<u>1</u>)
910.0 1,000.0	C124G911(<u>4</u>)5G5C(1) C124G102(4)5G5C(1)	CC76CG911(<u>4</u>) CC76CG102(<u>4</u>)	CCR76CG911(<u>4</u>)(<u>1</u>) CCR76CG102(<u>4</u>)(<u>1</u>)
1,000.0			
150.0	200 VOLT – C192 (CC C192G151(4)2G5C(1)		
150.0	C192G161(4)2G5C(1)	CC77CG151(<u>4</u>) CC77CG161(4)	CCR77CG151(<u>4</u>)(<u>1</u>) CCR77CG161(4)(1)
160.0	C192G181(4)2G5C(1)	CC77CG181(4)	CCR77CG181(4)(1)
180.0 200.0	C192G161(4)2G5C(1)	CC77CG181(<u>4</u>)	CCR77CG181(<u>4)(1)</u> CCR77CG201(<u>4)(1)</u>
220.0	C192G221(4)2G5C(1)	CC77CG221(4)	CCR77CG221(<u>4</u>)(<u>1</u>)
240.0	C192G241(4)2G5C(1)	CC77CG241(<u>4</u>)	CCR77CG241(<u>4</u>)(<u>1</u>)
270.0	C192G271(<u>4</u>)2G5C(1)	CC77CG271(4)	CCR77CG271(<u>4</u>)(<u>1</u>)
300.0	C192G301(<u>4</u>)2G5C(1)	CC77CG301(<u>4</u>)	CCR77CG301(<u>4</u>)(<u>1</u>)
330.0	C192G331(<u>4</u>)2G5C(1)	CC77CG331(<u>4</u>)	CCR77CG331(<u>4</u>)(<u>1</u>)
360.0	C192G361(<u>4</u>)2G5C(1)	CC77CG361(<u>4</u>)	CCR77CG361(<u>4</u>)(<u>1</u>)
390.0	C192G391(<u>4</u>)2G5C(1)	CC77CG391(<u>4</u>)	CCR77CG391(<u>4</u>)(<u>1</u>)
000.0	C102C421(4)2CEC(1)	CC77CG431(<u>4</u>)	CCR77CG431(4)(1)
430.0	C192G431(<u>4</u>)2G5C(1)		
	C192G471(<u>4</u>)2G5C(1)	CC77CG471(<u>4</u>)	CCR77CG471(<u>4</u>)(<u>1</u>)
430.0 470.0 510.0	C192G471(<u>4</u>)2G5C(1) C192G511(<u>4</u>)2G5C(1)	CC77CG511(<u>4</u>)	CCR77CG511(<u>4</u>)(<u>1</u>)
430.0 470.0 510.0 560.0	C192G471(<u>4</u>)2G5C(1) C192G511(<u>4</u>)2G5C(1) C192G561(<u>4</u>)2G5C(1)	CC77CG511(<u>4</u>) CC77CG561(<u>4</u>)	CCR77CG511(<u>4</u>)(<u>1</u>) CCR77CG561(<u>4</u>)(<u>1</u>)
430.0 470.0 510.0	C192G471(<u>4</u>)2G5C(1) C192G511(<u>4</u>)2G5C(1)	CC77CG511(<u>4</u>)	CCR77CG511(<u>4</u>)(<u>1</u>)

To complete Part Number, insert the following letters:
(1) Available Failure Rates: A (CC styles only); M, P, R & S (CCR styles only).
(2) Available Capacitance Tolerances: B, C.
(3) Available Capacitance Tolerances: B, C, D.
(4) Available Capacitance Tolerances: F, G, J.

CERAMIC MOLDED/AXIAL — MIL-PRF-20

ULTRA-STABLE TEMPERATURE CHARACTERISTIC — CG (EIA-COG)

RATINGS & PART NUMBER REFERENCE

CAP.	KEMET	MILITARY	MILITARY	CAP.	KEMET	MILITARY STYLE	MILITARY STYLE
pF	PART NUMBER	STYLE CC	STYLE CCR	pF	PART NUMBER	CC	CCR
	100 VOLT - C192 (CC)	R)77 PER MIL-PRF-2	0/29)		100 VOLT - C202 (CC	(R)78 PER MIL-PRF-20	0/30)
750.0	C192G751(4)1G5C(1)	CC77CG751(4)	CCR77CG751(4)(1)	3,900.0	C202G392(<u>5</u>)1G5C(<u>1</u>)	CC78CG392(<u>5</u>)	CCR78CG392(<u>5</u>)(<u>1</u>)
820.0	C192G821(4)1G5C(1)	CC77CG821(<u>4</u>)	CCR77CG821(<u>4</u>)(<u>1</u>)	4,700.0	C202G472(<u>5</u>)1G5C(<u>1</u>)	CC78CG472(<u>5</u>)	CCR78CG472(5)(1)
910.0	C192G911(4)1G5C(1)	CC77CG911(<u>4</u>)	CCR77CG911(<u>4</u>)(<u>1</u>)	5,600.0	C202G562(<u>5</u>)1G5C(<u>1</u>)	CC78CG562(<u>5</u>)	CCR78CG562(5)(1)
1,000.0	C192G102(4)1G5C(1)	CC77CG102(4)	CCR77CG102(<u>4</u>)(<u>1</u>)	6,800.0	C202G682(<u>5</u>)1G5C(<u>1</u>)	CC78CG682(<u>5</u>)	CCR78CG682(5)(1)
1,100.0	C192G112(<u>4</u>)1G5C(<u>1</u>)	CC77CG112(<u>4</u>)	CCR77CG112(<u>4</u>)(<u>1</u>)	8,200.0	C202G822(<u>5</u>)1G5C(<u>1</u>)	CC78CG822(<u>5</u>)	CCR78CG822(5)(1)
1,200.0	C192G122(4)1G5C(1)	CC77CG122(4)	CCR77CG122(<u>4</u>)(<u>1</u>)	10,000.0	C202G103(<u>5</u>)1G5C(<u>1</u>)	CC78CG103(<u>5</u>)	CCR78CG103(5)(1)
1,300.0	C192G132(4)1G5C(1)	CC77CG132(4)	CCR77CG132(<u>4</u>)(<u>1</u>)	12,000.0	C202G123(<u>5</u>)1G5C(<u>1</u>)	CC78CG123(<u>5</u>)	CCR78CG123(<u>5</u>)(<u>1</u>)
1,500.0	C192G152(4)1G5C(1)	CC77CG152(4)	CCR77CG152(<u>4</u>)(<u>1</u>)		50 VOLT - C202 (CC)	R)78 PER MIL-PRF-20	/30)
1,600.0	C192G162(<u>4</u>)1G5C(<u>1</u>)	CC77CG162(<u>4</u>)	CCR77CG162(<u>4</u>)(<u>1</u>)	15.000.0	C202G153(5)5G5C(1)	CC78CG153(5)	CCR78CG153(5)(1)
1,800.0	C192G182(<u>4</u>)1G5C(<u>1</u>)	CC77CG182(<u>4</u>)	CCR77CG182(<u>4</u>)(<u>1</u>)	18.000.0	C202G183(5)5G5C(1)	CC78CG183(5)	CCR78CG183(<u>5</u>)(<u>1</u>)
2,000.0	C192G202(<u>4</u>)1G5C(<u>1</u>)	CC77CG202(<u>4</u>)	CCR77CG202(<u>4</u>)(<u>1</u>)	22.000.0	C202G223(5)5G5C(1)	CC78CG223(<u>5</u>)	CCR78CG223(<u>5</u>)(<u>1</u>)
2,200.0	C192G222(<u>4</u>)1G5C(<u>1</u>)	CC77CG222(<u>4</u>)	CCR77CG222(<u>4</u>)(<u>1</u>)	27,000.0	C202G273(5)5G5C(1)	CC78CG273(5)	CCR78CG273(<u>5</u>)(<u>1</u>)
	50 VOLT - C192 (CC(R)77 PER MIL-PRF-20	0/29)	27,000.0	(=) (=)	(R)79 PER MIL-PRF-20	(2) (2)
2,400.0	C192G242(4)5G5C(1)	CC77CG242(4)	CCR77CG242(4)(1)	3.900.0	C222G392(5)2G5C(1)	CC79CG392(5)	CCR79CG392(<u>5</u>)(<u>1</u>)
2,700.0	C192G272(4)5G5C(1)	CC77CG272(4)	CCR77CG272(4)(1)	4.700.0	C222G472(5)2G5C(1)	CC79CG472(5)	CCR79CG472(5)(1)
3,000.0	C192G302(4)5G5C(1)	CC77CG302(4)	CCR77CG302(4)(1)	5.600.0	C222G562(5)2G5C(1)	CC79CG562(5)	CCR79CG562(5)(1)
3,300.0	C192G332(4)5G5C(1)	CC77CG332(4)	CCR77CG332(4)(1)	6,800.0	C222G682(5)2G5C(1)	CC79CG682(5)	CCR79CG682(5)(1)
3,600.0	C192G362(4)5G5C(1)	CC77CG362(4)	CCR77CG362(4)(1)	8.200.0	C222G822(5)2G5C(1)	CC79CG822(5)	CCR79CG822(5)(1)
3,900.0	C192G392(4)5G5C(1)	CC77CG392(4)	CCR77CG392(4)(1)	10.000.0	C222G103(5)2G5C(1)	CC79CG103(5)	CCR79CG103(5)(1)
4,300.0	C192G432(4)5G5C(1)	CC77CG432(4)	CCR77CG432(4)(1)	10,000.0	(=) (=)	_/	(=/(=/
4,700.0	C192G472(4)5G5C(1)	CC77CG472(4)	CCR77CG472(4)(1)			(R)79 PER MIL-PRF-20	,
5,100.0	C192G512(5)5G5C(1)	CC77CG512(<u>5</u>)	CCR77CG512(<u>5</u>)(<u>1</u>)	15,000.0	C222G153(<u>5</u>)1G5C(<u>1</u>)	CC79CG153(<u>5</u>)	CCR79CG153(<u>5</u>)(<u>1</u>)
5,600.0	C192G562(5)5G5C(1)	CC77CG562(<u>5</u>)	CCR77CG562(<u>5</u>)(<u>1</u>)	18,000.0	C222G183(<u>5</u>)1G5C(<u>1</u>)	CC79CG183(<u>5</u>)	CCR79CG183(<u>5</u>)(<u>1</u>)
	200 VOLT - C202 (CC)	R)78 PFR MII -PRF-2	0/30)	22,000.0	C222G223(<u>5</u>)1G5C(<u>1</u>)	CC79CG223(<u>5</u>)	CCR79CG223(<u>5</u>)(<u>1</u>)
820.0	C202G821(5)2G5C(1)	CC78CG821(5)	CCR78CG821(<u>5</u>)(<u>1</u>)	27,000.0	C222G273(<u>5</u>)1G5C(<u>1</u>)	CC79CG273(<u>5</u>)	CCR79CG273(<u>5</u>)(<u>1</u>)
1.000.0	C202G102(5)2G5C(1)	CC78CG102(5)	CCR78CG102(<u>5</u>)(<u>1</u>)	33,000.0	C222G333(<u>5</u>)1G5C(<u>1</u>)	CC79CG333(<u>5</u>)	CCR79CG333(<u>5</u>)(<u>1</u>)
1,200.0	C202G102(<u>5</u>)2G5C(<u>1</u>)	CC78CG122(5)	CCR78CG122(5)(1)	39,000.0	C222G393(<u>5</u>)1G5C(<u>1</u>)	CC79CG393(<u>5</u>)	CCR79CG393(<u>5</u>)(<u>1</u>)
1,500.0	C202G152(5)2G5C(1)	CC78CG152(5)	CCR78CG152(5)(1)		50 VOLT - C222 (CC)	R)79 PER MIL-PRF-20	/31)
1,800.0	C202G182(5)2G5C(1)	CC78CG182(5)	CCR78CG182(5)(1)	47,000.0	C222G473(<u>5</u>)5G5C(<u>1</u>)	CC79CG473(<u>5</u>)	CCR79CG473(<u>5</u>)(<u>1</u>)
2,200.0	C202G222(5)2G5C(1)	CC78CG222(5)	CCR78CG222(5)(1)	56,000.0	C222G563(<u>5</u>)5G5C(<u>1</u>)	CC79CG563(<u>5</u>)	CCR79CG563(5)(1)
2,700.0	C202G272(5)2G5C(1)	CC78CG272(5)	CCR78CG272(5)(1)	68,000.0	C222G683(<u>5</u>)5G5C(<u>1</u>)	CC79CG683(<u>5</u>)	CCR79CG683(5)(1)
3,300.0	C202G332(5)2G5C(1)	CC78CG332(5)	CCR78CG332(<u>5</u>)(<u>1</u>)	82,000.0	C222G823(<u>5</u>)5G5C(<u>1</u>)	CC79CG823(<u>5</u>)	CCR79CG823(5)(1)
	====(<u>=</u> /====(<u>+</u> /=	(<u>v</u>)	··· (<u>-</u> /(<u>-</u> /				

To complete Part Number, insert the following letters:

(1) Available Failure Rates: A (CC styles only); M, P, R & S (CCR styles only).

(2) Available Capacitance Tolerances: B, C, D.

(3) Available Capacitance Tolerances: F, G, J.

(5) Available Capacitance Tolerances: F, G, J, K.

CERAMIC MOLDED/RADIAL — MIL-PRF-20 ULTRA-STABLE TEMPERATURE CHARACTERISTIC — CG (EIA-COG)

RATINGS & PART NUMBER REFERENCE

CAP.	KEMET	MILITARY	MILITARY	CA
pF	PART NUMBER	STYLE CC	STYLE CCR	р
	200 VOLT - C052/056 SIZ	E (CC(R)05 PER MIL	-PRF-20/35)	
1.0	C05(6)G109(2)2G5C(1)	CC05CX1R0(2)	CCR05CX1R0(2)(1)(7)	56
1.1	C05(6)G119(2)2G5C(1)	CC05CX1R1(2)	CCR05CX1R1(2)(1)(7)	62
1.2	C05(6)G129(2)2G5C(1)	CC05CX1R2(2)	CCR05CX1R2(2)(1)(7)	68
1.3	C05(6)G139(2)2G5C(1)	CC05CX1R3(2)	CCR05CX1R3(2)(1)(7)	82
1.5	C05(<u>6</u>)G159(<u>2</u>)2G5C(<u>1</u>)	CC05CX1R5(2)	CCR05CX1R5(<u>2</u>)(<u>1</u>)(7)	9
1.6	C05(<u>6</u>)G169(<u>2</u>)2G5C(<u>1</u>)	CC05CX1R6(2)	CCR05CX1R6(<u>2</u>)(<u>1</u>)(7)	100
1.8	C05(<u>6</u>)G189(<u>2</u>)2G5C(<u>1</u>)	CC05CX1R8(2)	CCR05CX1R8(<u>2</u>)(<u>1</u>)(7)	110
2.0	C05(<u>6</u>)G209(<u>2</u>)2G5C(<u>1</u>)	CC05CX2R0(2)	CCR05CX2R0(<u>2</u>)(<u>1</u>)(7)	120
2.2	C05(<u>6</u>)G229(<u>2</u>)2G5C(<u>1</u>)	CC05CK2R2(2)	CCR05CK2R2(<u>2</u>)(<u>1</u>)(7)	130
2.4	C05(<u>6</u>)G249(<u>2</u>)2G5C(<u>1</u>)	CC05CK2R4(2)	CCR05CK2R4(<u>2</u>)(<u>1</u>)(7)	150
2.7	C05(<u>6</u>)G279(<u>3</u>)2G5C(<u>1</u>)	CC05CK2R7(3)	CCR05CK2R7(3)(1)(7)	160
3.0	C05(6)G309(3)2G5C(1)	CC05CK3R0(3)	CCR05CK3R0(<u>3</u>)(<u>1</u>)(7)	180
3.3	C05(6)G339(3)2G5C(1)	CC05CK3R3(3)	CCR05CK3R3(<u>3</u>)(<u>1</u>)(7)	
3.6	C05(6)G369(3)2G5C(1)	CC05CK3R6(3)	CCR05CK3R6(3)(1)(7)	200
3.9	C05(6)G399(3)2G5C(1)	CC05CK3R9(3)	CCR05CK3R9(3)(1)(7)	240
4.3	C05(6)G439(3)2G5C(1)	CC05CJ4R3(3)	CCR05CJ4R3(3)(1)(7)	270
4.7	C05(6)G479(3)2G5C(1)	CC05CJ4R7(3)	CCR05CJ4R7(3)(1)(7)	
5.1	C05(6)G519(3)2G5C(1)	CC05CJ5R1(3)	CCR05CJ5R1(3)(1)(7)	300
5.6	C05(6)G569(3)2G5C(1)	CC05CJ5R6(3)	CCR05CJ5R6(3)(1)(7)	330
6.2	C05(6)G629(3)2G5C(1)	CC05CJ6R2(3)	CCR05CJ6R2(3)(1)(7)	
6.8	C05(6)G689(3)2G5C(1)	CC05CJ6R8(3)	CCR05CJ6R8(3)(1)(7)	360
7.5	C05(6)G759(3)2G5C(1)	CC05CJ7R5(3)	CCR05CJ7R5(3)(1)(7)	390
8.2	C05(6)G829(3)2G5C(1)	CC05CH8R2(3)	CCR05CH8R2(3)(1)(7)	430
9.1	C05(6)G919(3)2G5C(1)	CC05CH9R1(3)	CCR05CH9R1(3)(1)(7)	470
10.0	C05(6)G100(4)2G5C(1)	CC05CH100(4)	CCR05CH100(4)(1)(7)	510
11.0	C05(6)G110(4)2G5C(1)	CC05CH110(4)	CCR05CH110(4)(1)(7)	560
12.0	C05(6)G120(4)2G5C(1)	CC05CH120(4)	CCR05CH120(4)(1)(7)	620
13.0	C05(6)G130(4)2G5C(1)	CC05CH130(4)	CCR05CH130(4)(1)(7)	680
15.0	C05(6)G150(4)2G5C(1)	CC05CH150(4)	CCR05CH150(4)(1)(7)	750
16.0	C05(6)G160(4)2G5C(1)	CC05CH160(4)	CCR05CH160(4)(1)(7)	820
18.0	C05(6)G180(4)2G5C(1)	CC05CH180(4)	CCR05CH180(<u>4</u>)(<u>1</u>)(7)	910
20.0	C05(6)G200(4)2G5C(1)	CC05CG200(4)	CCR05CG200(4)(1)(7)	1,000
22.0	C05(6)G220(4)2G5C(1)	CC05CG220(4)	CCR05CG220(4)(1)(7)	1,100
24.0	C05(6)G240(4)2G5C(1)	CC05CG240(4)	CCR05CG240(4)(1)(7)	1,200
27.0	C05(6)G270(4)2G5C(1)	CC05CG270(4)	CCR05CG270(4)(1)(7)	1,300
30.0	C05(6)G300(4)2G5C(1)	CC05CG300(4)	CCR05CG300(4)(1)(7)	1,500
33.0	C05(6)G330(4)2G5C(1)	CC05CG330(<u>4</u>)	CCR05CG330(4)(1)(7)	1,600
36.0	C05(6)G360(4)2G5C(1)	CC05CG360(<u>4</u>)	CCR05CG360(4)(1)(7)	1,800
39.0	C05(6)G390(4)2G5C(1)	CC05CG390(<u>4</u>)	CCR05CG390(4)(1)(7)	
43.0	C05(6)G430(4)2G5C(1)	CC05CG430(<u>4</u>)	CCR05CG430(4)(1)(7)	2.000
47.0	C05(6)G470(4)2G5C(1)	CC05CG470(<u>4</u>)	CCR05CG470(4)(1)(7)	2,000
51.0	C05(6)G510(4)2G5C(1)	CC05CG510(4)	CCR05CG510(<u>4</u>)(<u>1</u>)(7)	2,200
	(2) = = = (2)	(=/		2,40

To complete Part Num	ber, insert the	following letters:
----------------------	-----------------	--------------------

⁽¹⁾ Available Failure Rates: A (CC styles only); M, P, R & S (CCR styles only).

And leave blank for the flat bottom design (C052G)

CAP.	KEMET	MILITARY	MILITARY STYLE			
pF	PART NUMBER	STYLE CC	CCR			
200 VOLT - C052/056 SIZE (CC(R)05 PER MIL-PRF-20/35)						
56.0	C05(6)G560(4)2G5C(1)	CC05CG560(4)	CCR05CG560(<u>4</u>)(<u>1</u>)(7)			
62.0	C05(6)G620(4)2G5C(1)	CC05CG620(4)	CCR05CG620(4)(1)(7			
68.0	C05(6)G680(4)2G5C(1)	CC05CG680(4)	CCR05CG680(<u>4</u>)(<u>1</u>)(7)			
75.0	C05(6)G750(4)2G5C(1)	CC05CG750(4)	CCR05CG750(4)(1)(7)			
82.0	C05(6)G820(4)2G5C(1)	CC05CG820(4)	CCR05CG820(4)(1)(7)			
91.0	C05(6)G910(4)2G5C(1)	CC05CG910(4)	CCR05CG910(4)(1)(7			
100.0	C05(6)G101(4)2G5C(1)	CC05CG101(4)	CCR05CG101(4)(1)(7			
110.0	C05(6)G111(4)2G5C(1)	CC05CG111(4)	CCR05CG111(4)(1)(7)			
120.0	C05(6)G121(4)2G5C(1)	CC05CG121(4)	CCR05CG121(4)(1)(7			
130.0	C05(6)G131(4)2G5C(1)	CC05CG131(<u>4</u>)	CCR05CG131(4)(1)(7			
150.0	C05(6)G131(4)2G5C(1)	CC05CG131(<u>4</u>)	CCR05CG131(4)(1)(7			
160.0	C05(6)G161(4)2G5C(1)	CC05CG161(4)	CCR05CG161(4)(1)(7			
180.0	C05(<u>6</u>)G181(<u>4</u>)2G5C(<u>1</u>)	CC05CG181(<u>4</u>)	CCR05CG181(4)(1)(7			
200.0	C05(6)G201(4)2G5C(1)	CC05CG201(<u>4</u>)	CCR05CG201(4)(1)(7			
220.0	C05(6)G221(4)2G5C(1)	CC05C221(<u>4</u>)	CCR05CG221(4)(1)(7)			
240.0	C05(6)G241(4)2G5C(1)	CC05CG241(<u>4</u>)	CCR05CG241(4)(1)(7			
270.0	C05(6)G271(4)2G5C(1)	CC05CG271(4)	CCR05CG271(4)(1)(7)			
300.0	C05(<u>6</u>)G301(<u>4</u>)2G5C(<u>1</u>)	CC05CG301(<u>4</u>)	CCR05CG301(4)(1)(7)			
330.0	C05(<u>6</u>)G331(<u>4</u>)2G5C(<u>1</u>)	CC05CG331(<u>4</u>)	CCR05CG331(4)(1)(7)			
	100 VOLT - C052/056 SIZ	E (CC(R)05 PER MIL	-PRF-20/35)			
360.0	C05(<u>6</u>)G361(<u>4</u>)1G5C(<u>1</u>)	CC05CG361(<u>4</u>)	CCR05CG361(4)(1)(7			
390.0	C05(6)G391(4)1G5C(1)	CC05CG391(<u>4</u>)	CCR05CG391(4)(1)(7			
430.0	C05(6)G431(4)1G5C(1)	CC05CG431(4)	CCR05CG431(4)(1)(7			
470.0	C05(<u>6</u>)G471(<u>4</u>)1G5C(<u>1</u>)	CC05CG471(<u>4</u>)	CCR05CG471(4)(1)(7)			
510.0	C05(6)G511(4)1G5C(1)	CC05CG511(<u>4</u>)	CCR05CG511(4)(1)(7)			
560.0	C05(<u>6</u>)G561(<u>4</u>)1G5C(<u>1</u>)	CC05CG561(<u>4</u>)	CCR05CG561(4)(1)(7)			
620.0	C05(6)G621(4)1G5C(1)	CC05CG621(<u>4</u>)	CCR05CG621(4)(1)(7)			
680.0	C05(<u>6</u>)G681(<u>4</u>)1G5C(<u>1</u>)	CC05CG681(<u>4</u>)	CCR05CG681(4)(1)(7)			
750.0	C05(<u>6</u>)G751(<u>4</u>)1G5C(<u>1</u>)	CC05CG751(<u>4</u>)	CCR05CG751(4)(1)(7)			
820.0	C05(<u>6</u>)G821(<u>4</u>)1G5C(<u>1</u>)	CC05CG821(<u>4</u>)	CCR05CG821(4)(1)(7)			
910.0	C05(<u>6</u>)G911(<u>4</u>)1G5C(<u>1</u>)	CC05CG911(<u>4</u>)	CCR05CG911(4)(1)(7)			
1,000.0	C05(<u>6</u>)G102(<u>4</u>)1G5C(<u>1</u>)	CC05CG102(<u>4</u>)	CCR05CG102(4)(1)(7)			
1,100.0	C05(<u>6</u>)G112(<u>4</u>)1G5C(<u>1</u>)	CC05CG112(<u>4</u>)	CCR05CG112(4)(1)(7)			
1,200.0	C05(<u>6</u>)G122(<u>4</u>)1G5C(<u>1</u>)	CC05CG122(<u>4</u>)	CCR05CG122(4)(1)(7)			
1,300.0	C05(<u>6</u>)G132(<u>4</u>)1G5C(<u>1</u>)	CC05CG132(<u>4</u>)	CCR05CG132(4)(1)(7)			
1,500.0	C05(<u>6</u>)G152(<u>4</u>)1G5C(<u>1</u>)	CC05CG152(<u>4</u>)	CCR05CG152(4)(1)(7)			
1,600.0	C05(<u>6</u>)G162(<u>4</u>)1G5C(<u>1</u>)	CC05CG162(<u>4</u>)	CCR05CG162(4)(1)(7			
1,800.0	C05(<u>6</u>)G182(<u>4</u>)1G5C(<u>1</u>)	CC05CG182(<u>4</u>)	CCR05CG182(<u>4</u>)(<u>1</u>)(7			
	50 VOLT - C052/056 SIZE	(CC(R)05 PER MIL-				
2,000.0	C05(<u>6</u>)G202(<u>4</u>)5G5C(<u>1</u>)	CC05CG202(<u>4</u>)	CCR05CG202(<u>4</u>)(<u>1</u>)(7			
2,200.0	C05(<u>6</u>)G222(<u>4</u>)5G5C(<u>1</u>)	CC05CG222(<u>4</u>)	CCR05CG222(<u>4</u>)(<u>1</u>)(7			
2,400.0	C05(6)G242(4)5G5C(1)	CC05CG242(<u>4</u>)	CCR05CG242(4)(1)(7)			
2,700.0	C05(6)G272(4)5G5C(1)	CC05CG272(<u>4</u>)	CCR05CG272(4)(1)(7)			
3,000.0	C05(6)G302(4)5G5C(1)	CC05CG302(<u>4</u>)	CCR05CG302(<u>4</u>)(<u>1</u>)(7			
3,300.0	C05(6)G332(4)5G5C(1)	CC05CG332(4)	CCR05CG332(4)(1)(7)			

⁽²⁾ Available Capacitance Tolerances: B, C. (3) Available Capacitance Tolerances: B, C, D. (4) Available Capacitance Tolerances: F, G, J.

⁽⁵⁾ Available Capacitance Tolerances: F, G, J, K.

⁽⁶⁾ Insert "2" for standard design, Style C052G
Insert "6" for stand-off design, Style C056G
(7) Add "V" for stand-off design, Style C056G

CERAMIC MOLDED/RADIAL — MIL-PRF-20 ULTRA-STABLE TEMPERATURE CHARACTERISTIC — CG (EIA-COG)

RATINGS & PART NUMBER REFERENCE

CAP.	KEMET	MILITARY	MILITARY STYLE				
pF	PART NUMBER	STYLE CC	CCR				
200 VOLT - C062/066 SIZE (CC(R)06 PER MIL-PRF-20/36)							
360.0	C06(6)G361(4)2G5C(1)	CC06CG361(<u>4</u>)	CCR06CG361(4)(1)(7)				
390.0	C06(6)G391(4)2G5C(1)	CC06CG391(4)	CCR06CG391(4)(1)(7)				
430.0	C06(<u>6</u>)G431(<u>4</u>)2G5C(<u>1</u>)	CC06CG431(4)	CCR06CG431(4)(1)(7)				
470.0	C06(<u>6</u>)G471(<u>4</u>)2G5C(<u>1</u>)	CC06CG471(4)	CCR06CG471(4)(1)(7)				
510.0	C06(<u>6</u>)G511(<u>4</u>)2G5C(<u>1</u>)	CC06CG511(4)	CCR06CG511(4)(1)(7)				
560.0	C06(<u>6</u>)G561(<u>4</u>)2G5C(<u>1</u>)	CC06CG561(4)	CCR06CG561(4)(1)(7)				
620.0	C06(6)G621(4)2G5C(1)	CC06CG621(4)	CCR06CG621(4)(1)(7)				
680.0	C06(6)G681(4)2G5C(1)	CC06CG681(4)	CCR06CG681(4)(1)(7)				
750.0	C06(<u>6</u>)G751(<u>4</u>)2G5C(<u>1</u>)	CC06CG751(4)	CCR06CG751(4)(1)(7)				
820.0	C06(6)G821(4)2G5C(1)	CC06CG821(4)	CCR06CG821(4)(1)(7)				
910.0	C06(6)G911(4)2G5C(1)	CC06CG911(4)	CCR06CG911(4)(1)(7)				
1,000.0	C06(6)G102(4)2G5C(1)	CC06CG102(4)	CCR06CG102(4)(1)(7)				
1,100.0	C06(6)G112(4)2G5C(1)	CC06CG112(4)	CCR06CG112(4)(1)(7)				
1,200.0	C06(6)G122(4)2G5C(1)	CC06CG122(4)	CCR06CG122(4)(1)(7)				
1,300.0	C06(6)G132(4)2G5C(1)	CC06CG132(4)	CCR06CG132(4)(1)(7)				
1,500.0	C06(6)G152(4)2G5C(1)	CC06CG152(4)	CCR06CG152(4)(1)(7)				
1,600.0	C06(6)G162(4)2G5C(1)	CC06CG162(4)	CCR06CG162(4)(1)(7)				
1,800.0	C06(6)G182(4)2G5C(1)	CC06CG182(<u>4</u>)	CCR06CG182(4)(1)(7)				
	100 VOLT - C062/066 SIZE	(CC(R)06 PER MIL-	PRF-20/36)				
2,000.0	C06(<u>6</u>)G202(<u>4</u>)1G5C(<u>1</u>)	CC06CG202(<u>4</u>)	CCR06CG202(<u>4</u>)(<u>1</u>)(7)				
2,200.0	C06(<u>6</u>)G222(<u>4</u>)1G5C(<u>1</u>)	CC06CG222(4)	CCR06CG222(4)(1)(7)				
2,400.0	C06(<u>6</u>)G242(<u>4</u>)1G5C(<u>1</u>)	CC06CG242(4)	CCR06CG242(4)(1)(7)				
2,700.0	C06(<u>6</u>)G272(<u>4</u>)1G5C(<u>1</u>)	CC06CG272(4)	CCR06CG272(4)(1)(7)				
3,000.0	C06(<u>6</u>)G302(<u>4</u>)1G5C(<u>1</u>)	CC06CG302(4)	CCR06CG302(<u>4</u>)(<u>1</u>)(7)				
3,300.0	C06(<u>6</u>)G332(<u>4</u>)1G5C(<u>1</u>)	CC06CG332(<u>4</u>)	CCR06CG332(<u>4</u>)(<u>1</u>)(7)				
3,600.0	C06(<u>6</u>)G362(<u>4</u>)1G5C(<u>1</u>)	CC06CG362(<u>4</u>)	CCR06CG362(<u>4</u>)(<u>1</u>)(7)				
3,900.0	C06(<u>6</u>)G392(<u>4</u>)1G5C(<u>1</u>)	CC06CG392(<u>4</u>)	CCR06CG392(4)(1)(7)				
4,300.0	C06(<u>6</u>)G432(<u>4</u>)1G5C(<u>1</u>)	CC06CG432(4)	CCR06CG432(4)(1)(7)				
4,700.0	C06(<u>6</u>)G472(<u>4</u>)1G5C(<u>1</u>)	CC06CG472(<u>4</u>)	CCR06CG472(<u>4</u>)(<u>1</u>)(7)				
	50 VOLT - C062/066 SIZE (CC(R)06 PER MIL-F	PRF-20/36)				
5,100.0	C06(6)G512(5)5G5C(1)	CC06CG512(5)	CCR06CG512(5)(1)(7)				
5,600.0	C06(6)G562(5)5G5C(1)	CC06CG562(<u>5</u>)	CCR06CG562(<u>5</u>)(<u>1</u>)(7)				
6,200.0	C06(6)G622(5)5G5C(1)	CC06CG622(<u>5</u>)	CCR06CG622(<u>5</u>)(<u>1</u>)(7)				
6,800.0	C06(6)G682(5)5G5C(1)	CC06CG682(<u>5</u>)	CCR06CG682(<u>5</u>)(<u>1</u>)(7)				
7,500.0	C06(6)G752(5)5G5C(1)	CC06CG752(<u>5</u>)	CCR06CG752(5)(1)(7)				

CAP. pF	KEMET PART NUMBER	MILITARY STYLE CC	MILITARY STYLE CCR	
	50 VOLT - C062/066 SIZE (CC(R)06 PER MIL-F		
8,200.0	C06(6)G822(5)5G5C(1)	CC06CG822(<u>5</u>)	CCR06CG822(<u>5</u>)(<u>1</u>)(7	
9,100.0	C06(6)G912(5)5G5C(1)	CC06CG912(5)	CCR06CG912(5)(1)(7	
10,000.0	C06(6)G103(5)5G5C(1)	CC06CG103(5)	CCR06CG103(5)(1)(7	
12,000.0	C06(6)G123(5)5G5C(1)	CC06CG123(5)	CCR06CG123(5)(1)(7	
15,000.0	C06(6)G153(5)5G5C(1)	CC06CG153(5)	CCR06CG153(<u>5</u>)(<u>1</u>)(7	
18,000.0	C06(<u>6</u>)G183(<u>5</u>)5G5C(<u>1</u>)	CC06CG183(<u>5</u>)	CCR06CG183(<u>5</u>)(<u>1</u>)(7	
	200 VOLT - C512 SIZE (C	C(R)07 PER MIL-PF	RF-20/37)	
2,200.0	C512G222(<u>5</u>)2G5C(<u>1</u>)	CC07CG222(<u>5</u>)	CCR07CG222(<u>5</u>)(<u>1</u>)	
2,700.0	C512G272(5)2G5C(1)	CC07CG272(5)	CCR07CG272(5)(1)	
3,300.0	C512G332(<u>5</u>)2G5C(<u>1</u>)	CC07CG332(5)	CCR07CG332(5)(1)	
3,900.0	C512G392(<u>5</u>)2G5C(<u>1</u>)	CC07CG392(5)	CCR07CG392(<u>5</u>)(<u>1</u>)	
4,700.0	C512G472(<u>5</u>)2G5C(<u>1</u>)	CC07CG472(<u>5</u>)	CCR07CG472(<u>5</u>)(<u>1</u>)	
	100 VOLT - C512 SIZE (C	C(R)07 PER MIL-PE	RF-20/37)	
5,600.0	C512G562(<u>5</u>)1G5C(<u>1</u>)	CC07CG562(<u>5</u>)	CCR07CG562(<u>5</u>)(<u>1</u>)	
6,800.0	C512G682(<u>5</u>)1G5C(<u>1</u>)	CC07CG682(5)	CCR07CG682(<u>5</u>)(<u>1</u>)	
8,200.0	C512G822(<u>5</u>)1G5C(<u>1</u>)	CC07CG822(<u>5</u>)	CCR07CG822(<u>5</u>)(<u>1</u>)	
10,000.0	C512G103(<u>5</u>)1G5C(<u>1</u>)	CC07CG103(5)	CCR07CG103(<u>5</u>)(<u>1</u>)	
12,000.0	C512G123(<u>5</u>)1G5C(<u>1</u>)	CC07CG123(<u>5</u>)	CCR07CG123(<u>5</u>)(<u>1</u>)	
	50 VOLT - C512 SIZE (C0	C(R)07 PER MIL-PR	F-20/37)	
15,000.0	C512G153(<u>5</u>)5G5C(<u>1</u>)	CC07CG153(<u>5</u>)	CCR07CG153(<u>5</u>)(<u>1</u>)	
18,000.0	C512G183(<u>5</u>)5G5C(<u>1</u>)	CC07CG183(<u>5</u>)	CCR07CG183(<u>5</u>)(<u>1</u>)	
22,000.0	C512G223(<u>5</u>)5G5C(<u>1</u>)	CC07CG223(<u>5</u>)	CCR07CG223(<u>5</u>)(<u>1</u>)	
27,000.0	C512G273(<u>5</u>)5G5C(<u>1</u>)	CC07CG273(<u>5</u>)	CCR07CG273(<u>5</u>)(<u>1</u>)	
33,000.0	C512G333(<u>5</u>)5G5C(<u>1</u>)	CC07CG333(<u>5</u>)	CCR07CG333(<u>5</u>)(<u>1</u>)	
39,000.0	C512G393(<u>5</u>)5G5C(<u>1</u>)	CC07CG393(<u>5</u>)	CCR07CG393(<u>5</u>)(<u>1</u>)	
47,000.0	C512G473(<u>5</u>)5G5C(<u>1</u>)	CC07CG473(<u>5</u>)	CCR07CG473(<u>5</u>)(<u>1</u>)	
56,000.0	C512G563(<u>5</u>)5G5C(<u>1</u>)	CC07CG563(<u>5</u>)	CCR07CG563(<u>5</u>)(<u>1</u>)	
68,000.0	C512G683(<u>5</u>)5G5C(<u>1</u>)	CC07CG683(<u>5</u>)	CCR07CG683(<u>5</u>)(<u>1</u>)	
83,000.0	C512G833(<u>5</u>)5G5C(<u>1</u>)	CC07CG833(<u>5</u>)	CCR07CG833(<u>5</u>)(<u>1</u>)	
100,000.0	C512G104(<u>5</u>)5G5C(<u>1</u>)	CC07CG104(<u>5</u>)	CCR07CG104(<u>5</u>)(<u>1</u>)	
	200 VOLT - C522 SIZE (C	C(R)08 PER MIL-PF		
3,900.0	C522G392(<u>8</u>)2G5C(<u>1</u>)	CC08CG392(<u>8</u>)	CCR08CG392(8)(1)	
4,700.0	C522G472(<u>8</u>)2G5C(<u>1</u>)	CC08CG472(<u>8</u>)	CCR08CG472(<u>8</u>)(<u>1</u>)	
	100 VOLT - C522 SIZE (C	C(R)08 PER MIL-PR	RF-20/38)	
15,000.0	C522G153(<u>8</u>)1G5C(<u>1</u>)	CC08CG153(<u>8</u>)	CCR08CG153(8)(1)	
18,000.0	C522G183(<u>8</u>)1G5C(<u>1</u>)	CC08CG183(<u>8</u>)	CCR08CG183(<u>8</u>)(<u>1</u>)	
	50 VOLT - C522 SIZE (C0	C(R)08 PER MIL-PR		
56,000.0	C522G563(<u>8</u>)5G5C(<u>1</u>)	CC08CG563(<u>8</u>)	CCR08CG563(<u>8</u>)(<u>1</u>)	
68,000.0	C522G683(<u>8</u>)5G5C(<u>1</u>)	CC08CG683(8)	CCR08CG683(<u>8</u>)(<u>1</u>)	

To complete Part Number, insert the following letters: (1) Available Failure Rates: A (CC styles only); M, P, R & S (CCR styles only). (2) Available Capacitance Tolerances: B, C.

⁽³⁾ Available Capacitance Tolerances: B, C, D.

 ⁽³⁾ Available Capacitance Tolerances: F, G, J.
 (4) Available Capacitance Tolerances: F, G, J.
 (5) Available Capacitance Tolerances: F, G, J, K.
 (6) Insert "2" for standard design, Style C062G Insert "6" for stand-off design, Style C066G
 3 Stand-offs are available only as CCR's, not available as CC.

 ⁽⁷⁾ Add "V" for stand-off design, Style C066G
 And leave blank for the flat bottom design (C062G)
 (8) Available Capacitance Tolerances: G, J, K

CERAMIC LEADED PACKAGING INFORMATION

		p. m. 1. 1.	Standard (1)	Ammo Pack	Maximum	_
KEMET Series	Military Style	Military Specification	Bulk Quantity	Quantity Maximum	Reel Quantity	Reel Size
C114C-K-G	CK12, CC75	MIL-C-11015/	200/Box		5000	12"
C124C-K-G	CK13, CC76	MIL-PRF-20	200/Box		5000	12"
C192C-K-G	CK14, CC77		100/Box		3000	12"
C202C-K	CK15		25/Box		500	12"
C222C-K	CK16		10/Tray		300	12"
C052C-K-G	CK05, CC05		100/Bag	2000	2000	12"
C062C-K-G	CK06, CC06		100/Bag	1500	1500	12"
C114G	CCR75	MIL-PRF-20	200/Box		5000	12"
C124G	CCR76		200/Box		5000	12"
C192G	CCR77		100/Box		3000	12"
C202G	CC78-CCR78		25/Box		500	12"
C222G	CC79-CCR79		10/Tray		300	12"
C052/56G	CCR05		100/Bag		1700	12"
C062/66G	CCR06		100/Bag		1500	12"
C512G	CC07-CCR07		Footnote (2)		N/A	N/A
C522G	CC08-CCR08		Footnote (2)		N/A	N/A
C114T	CKR11	MIL-PRF-39014	200/Box		5000	12"
C124T	CKR12	WIIL-1 141 -00014	200/Box		5000	12"
C192T	CKR12		100/Box		3000	12"
C202T	CKR15		25/Box		500	12"
C202T	CKR16		10/Tray		300	12"
C052/56T	CKR05		100/Hay		1700	12"
C062/66T	CKR06		100/Bag		1500	12"
C31X	CICICOO		500/Bag	2500	2500	12"
C32X			500/Bag	2500	2500	12"
C32X				1500	1500	12"
			250/Bag 100/Bag			12"
C340			50/Bag	1000	1000	12"
C350 C410				N/A	500	12"
			300/Box	4000	5000	
C412			200/Box	4000	5000	12"
C420			300/Box	4000	5000	12"
C430			200/Box	2000	2500	12"
C440	N1/A	N1/A	200/Box	2000	2500	12"
C512	N/A	N/A	Footnote (2)		N/A	N/A
C522	N/A	N/A	Footnote (2)		N/A	N/A
C617			250/Bag		1000	12"
C622/C623			100/Bag 100/Bag		500 500	12"
C627/C628 C630/C631			100/Bag 100/Bag		500 500	12"
C630/C631			50/Bag		500	12"
C640/C641			50/Bag 50/Bag		500	12"
C640/C641 C642/C643			50/Bag 50/Bag		500	12" 12"
C647/C648			50/Bag 50/Bag		500	12"
C657/C658			50/Bag 50/Bag		500	12"
C667/C668			50/Bag 50/Bag		500	12"

NOTE: (1) Standard packaging refers to number of pieces per bag, tray or vial.

⁽²⁾ Quantity varies. For further details, please consult the factory.

Tape & Reel Packaging Information

KEMET offers standard reeling of Molded and Conformally Coated Radial Leaded Capacitors in accordance with EIA standard 468. Parts are taped to a tagboard carrier strip, and wound on a reel as shown in Figure 1. Kraft paper interleaving is inserted between the layers of capacitors on the reel. Ammopack is also available, with the same lead tape configuration and package quantities.

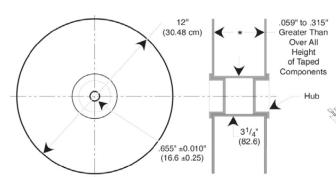
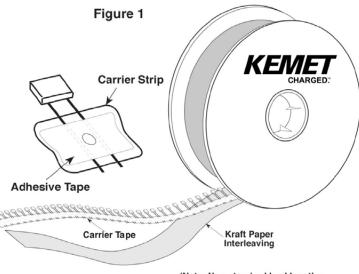



Figure 3: Standard Reel

(Note: Non-standard lead lengths available in bulk only.)

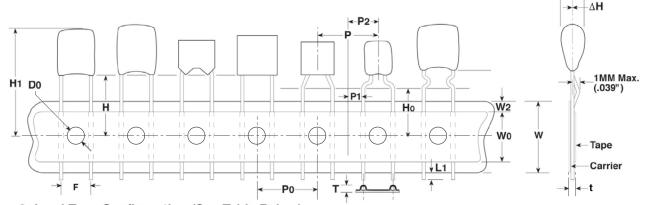


Figure 2: Lead Tape Configuration (See Table Below)

Ceramic Radial Tape and Reel Dimensions

Metric will govern

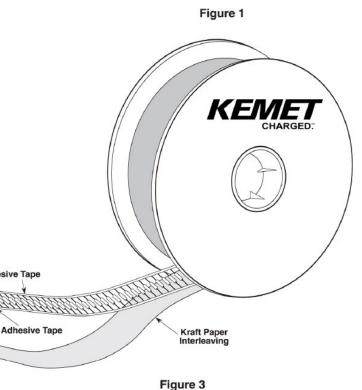
	Constant Dimensions — Millimeters (Inches)							
D ₀ ±0.2 (0.008)	P ₀ ±0.3 (0.012)	ΔH ±0.2 (0.008)	L ₁ Maximum	t ±0.2 (0.008)	T Maximum	W + 1.0/- 0.5 (+0.039/-0.020)	W ₀ Minimum	W ₂ Maximum
4.00 (0.157)	12.7 (0.500)	4.0 (0.157)	1.0 (0.039)	0.7 (0.051)	1.5 (0.059)	18.0 (0.709)	5.0 (0.197)	3.0 (0.118)

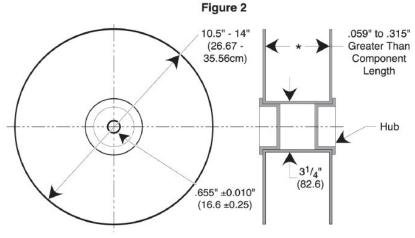
Ceramic Radial Tape and Reel Dimensions cont'dMetric will govern

	Variable Dimensions — Millimeters (Inches)						
F ±0.030 (0.78) Note 1	P ₁ ±0.030 (0.012) Note 1	P ±0.3 (0.012)	P ₂ ±1.3 (0.51)	H Minimum Note 2	H ₀ ±0.5 (0.630) Note 3		
2.54 (0.100)	5.08 (0.200)	12.7 (0.500)	6.35 (0.250)				
4.32 (0.170)	3.89 (0.153)	12.7 (0.500)	6.35 (0.250)				
5.08 (0.200)	3.81 (0.150)	12.7 (0.500)	6.35 (0.250)				
5.59 (0.220)	3.25 (0.128)	12.7 (0.500)	6.35 (0.250)				
6.98 (0.275)	2.54 (0.100)	12.7 (0.500)	6.35 (0.250)				
7.62 (0.300)	2.24 (0.088)	12.7 (0.500)	6.35 (0.250)	18.0 (0.709)	16.0 (0.024)		
9.52 (0.375)	7.62 (0.300)	12.7 (0.500)	6.35 (0.250)				
10.16 (0.400)	7.34 (0.290)	25.4 (1.000)	N/A				
12.06 (0.475)	6.35 (0.250)	25.4 (1.000)	N/A				
14.60 (0.575)	5.08 (0.200)	25.4 (1.000)	N/A				
17.14 (0.675)	3.81 (0.15)	25.4 (1.000)	N/A				

- 1. Measured at the egress from the carrier tape, on the component side.
- 2. Straight Lead configuration part types only.
- 3. Formed (bent) lead configuration part types only.

Symbol Reference Table				
D_{0}	Sprocket Hole Diameter			
P_0	Sprocket Hole Pitch			
Р	Component Pitch			
F	Lead Spacing			
P ₁	Sprocket Hole Center to Lead Center			
P_2	Sprocket Hole Center To Component Center			
Н	H Height to Seating Plane (Straight Leads Only)			
H_0	H ₀ Height to Seating Plane (Formed Leads Only)			
H ₁ Component Height Above Tape Center				
ΔH Component Alignment				
L ₁	Lead Protrusion			
t Composite Tape Thickness				
W	W Carrier Tape Width			
W_0	Hold-Down Tape Width			
W ₂ Hold-Down Tape Location				


Tape & Reel Packaging Information


KEMET offers standard reeling of molded and conformally coated axial leaded ceramic capacitors for automatic insertion or lead forming machines in accordance with EIA standard 296. KEMET's internal specification four-digit suffix, 7200, is placed at the end of the part number to designate tape and reel packaging, e.g., C410C104Z5U5CA7200.

Paper (50 lb.) test minimum is inserted between the layers of capacitors wound on reels for component pitch ≤ 0.400".

Capacitor lead length may extend only a maximum of .0625" (1.59 mm) beyond the tapes' edges. Capacitors are centered in a row between the two tapes and will deviate only ± 0.031" (0.79 mm) from the row center. A minimum of 36" (91.5 cm) leader tape is provided at each finished length of taped components.

Universal splicing clips are used to connect the tape.

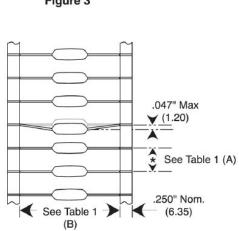


Table 3 – Ceramic Axial Tape and Reel Dimensions

Metric will govern

Dimensions — Millimeters (Inches)				
Axial Capacitor				
Body Diameter	±0.5 (0.020)	±1.5 (0.059)*		
0.0 to 5.0 (0.0 to 0.197)	5.0 (0.197)	52.4 (2.062)		

Symbol Reference Table				
A Component Pitch				
B Inside Tape Spacing				

^{*} Inside tape spacing dimension (B) is determined by the body diameter of the capacitor.

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast

Lake Mary, FL Tel: 407-855-8886

Northeast

Wilmington, MA Tel: 978-658-1663

Central

Novi, MI

Tel: 248-994-1030

West

Milpitas, CA Tel: 408-433-9950

Mexico

Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern EuropeSasso Marconi, Italy

Tel: 39-051-939111

Skopje, Macedonia Tel: 389-2-55-14-623

Central Europe

Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe

Wyboston, United Kingdom Tel: 44-1480-273082

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia

Hong Kong

Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5877-1075

Shanghai, China Tel: 86-21-6447-0707

Seoul, South Korea Tel: 82-2-6294-0550

Taipei, Taiwan

Tel: 886-2-27528585

Southeast Asia

Singapore

Tel: 65-6701-8033

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for kemet manufacturer:

Other Similar products are found below:

C0603C151K5GAC7867 49AN3470ZB01M CWR11KH106KCT250 T543D477K006ATE015 C1206N102K1GSLT500
C0805N330K1GSLT500 CDR34BX154AKUS71897505 C1206N393K5XSLT500 C0805N100K1GSLT500 C0603C120C5GAC7867
C0402C222J4GACAUTO7411 M39003/01-5168 M39003/09-3052 M39014/02-1238 ESK477M025AH1EA F161WP225K050V
MMK10104K100A01L16.5TR18 MMK10473K250A01L4BULK PEG130HJ4480QL1 PEH200YK4100MU2 PHE426HD7220JR06L2
PME271M610MR30 ACA16B331JGS R46KR34704001K R474N32200001K R71PI36804030M R75PR41504030J ALC10A181DC550
ALC40A471DH450 ALS30A332LF400 EDK227M010A9HAA EFF(03)-240X240 EFR(03)-240X240 EFX(02)-240X240T0800 EFX(05)-240X240 C0402C153K5RACTU C0402C182J3GACTU C0402C220J5GACAUTO C0402C223K4RACAUTO C0402C273K3RACTU
C0402C331K5RACTU C0402C471K5RACTU C0402C472K4RACTU C0402C823K4RACTU C0603C102J5GACAUTO
C0603C102K3RACAUTO C0603C109B5GACTU C0603C109C1GACTU C0603C162J5GACTU C0603C222J1GACTU