4-Bit Dual-Supply Inverting Level Translator

The NLSV4T240E is a 4-bit configurable dual-supply voltage level translator. The input A_n and output B_n ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_n to the output B_n port.

The NLSV4T240E is similar to the NLSV4T240; however, it has enhanced power-off characteristics.

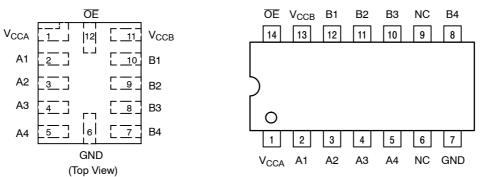
Features

- Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential V_{CCA} and V_{CCB} Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3-State with V_{CCB} at GND
- Ultra-Small Packaging: 1.7 mm x 2.0 mm UQFN12
- This is a Pb–Free Device

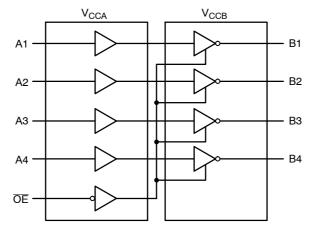
Typical Applications

• Mobile Phones, PDAs, Other Portable Devices

Important Information


- ESD Protection for All Pins:
 - HBM (Human Body Model) > 6000 V MM (Machine Model) > 300 V

	ON	
0	N Semicond	
		MARKING DIAGRAMS
	UQFN12 MU SUFFIX CASE 523AE	AEM•
M	E = Specific Device = Date Code = Pb-Free Pack icrodot may be in ei	age
14. 14 14 14 14 14 14 14 14 14 14 14 14 14	14 SOIC-14 D SUFFIX CASE 751A 1	A A A A A A A △ A A A A A A B B B B B B B B
14 (1	TSSOP-14 DT SUFFIX CASE 948G	14 8888888 SV4T 240E ALYW• 1 8888888 1
A L, WL Y, YY W, WM G or ■ (Note: 1	= Year / = Work Week	age


ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV4T240EMUTAG	UQFN12 (Pb-Free)	3000/Tape & Reel
NLSV4T240EDR2G	SO-14 (Pb-Free)	2500/Tape & Reel
NLSV4T240EDTR2G	TSSOP14 (Pb-Free)	2500/Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN ASSIGNMENT

Pin	Function
V _{CCA}	Input Port DC Power Supply
V _{CCB}	Output Port DC Power Supply
GND	Ground
A _n	Input Port
B _n	Output Port
ŌĒ	Output Enable

TRUTH TABLE

In	Outputs	
ŌĒ	A _n	B _n
L	L	Н
L	Н	L
Н	х	3-State

MAXIMUM RATINGS

Symbol	Rating		Value	Condition	Unit
V_{CCA}, V_{CCB}	DC Supply Voltage		-0.5 to +5.5		V
VI	DC Input Voltage	An	-0.5 to +5.5		V
V _C	Control Input	ŌĒ	-0.5 to +5.5		V
V _O	DC Output Voltage (Power Down)	B _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
	(Active Mode)	B _n	-0.5 to +5.5		V
	(Tri-State Mode)	B _n	-0.5 to +5.5		V
I _{IK}	DC Input Diode Current		-20	V _I < GND	mA
I _{OK}	DC Output Diode Current		-50	V _O < GND	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per Supply Pin		±100		mA
I _{GND}	DC Ground Current per Ground Pin		±100		mA
T _{STG}	Storage Temperature		-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Мах	Unit	
V_{CCA}, V_{CCB}	Positive DC Supply Voltage		0.9	4.5	V
VI	Bus Input Voltage	GND	4.5	V	
V _C	Control Input	GND	4.5	V	
V _{IO}	Bus Output Voltage (Power Down Mode)	B _n	GND	4.5	V
	(Active Mode)	B _n	GND	V _{CCB}	V
	(Tri-State Mode)	B _n	GND	4.5	V
T _A	Operating Temperature Range		-40	+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Rate V _I , from 30% to 70% of V _{CC} ; V _{CC} = 3.3 V ± 0.3 V		0	10	nS

DC ELECTRICAL CHARACTERISTICS

					–40°C te	o +85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
V _{IH}	Input HIGH Voltage		3.6 - 4.5	0.9 - 4.5	2.7	-	V
	(An, ŌE)		2.7 – 3.6		2.0	-	
			2.3 – 2.7		1.7	-	
			1.4 – 2.3		0.75 * V _{CCA}	-	
			0.9 - 1.4		0.9 * V _{CCA}	-	
V _{IL}	Input LOW Voltage		3.6 – 4.5	0.9 – 4.5	-	0.8	V
	(An, OE)		2.7 – 3.6		-	0.8	
			2.3 – 2.7		-	0.7	
			1.4 – 2.3		-	0.35 * V _{CCA}	
			0.9 – 1.4		-	0.1 * V _{CCA}	

DC ELECTRICAL CHARACTERISTICS

					–40°C to	+85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
V _{OH}	Output HIGH Voltage	I_{OH} = -100 μ A; V _I = V _{IH}	0.9 – 4.5	0.9 – 4.5	$V_{CCB} - 0.2$	-	V
		I_{OH} = -0.5 mA; V_I = V_{IH}	0.9	0.9	0.75 * V _{CCB}	-	1
		$I_{OH} = -2 \text{ mA}; V_I = V_{IH}$	1.4	1.4	1.05	-	1
		$I_{OH} = -6 \text{ mA}; \text{ V}_{I} = \text{V}_{IH}$	1.65	1.65	1.25	-	1
			2.3	2.3	2.0	-	1
		$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.8	-	1
			2.7	2.7	2.2	-	
		I_{OH} = -18 mA; V_I = V_{IH}	2.3	2.3	1.7	-	1
			3.0	3.0	2.4	-	1
		I_{OH} = -24 mA; V_I = V_{IH}	3.0	3.0	2.2	-	1
V _{OL}	Output LOW Voltage	$I_{OL} = 100 \ \mu A; \ V_I = V_{IL}$	0.9 – 4.5	0.9 – 4.5	-	0.2	V
		I_{OL} = 0.5 mA; V_I = V_{IH}	1.1	1.1	-	0.3	1
		$I_{OL} = 2 \text{ mA}; V_I = V_{IH}$	1.4	1.4	-	0.35	1
		$I_{OL} = 6 \text{ mA}; V_I = V_{IL}$	1.65	1.65	-	0.3	1
		I_{OL} = 12 mA; $V_I = V_{IL}$	2.3	2.3	-	0.4	1
			2.7	2.7	-	0.4	1
		I_{OL} = 18 mA; $V_I = V_{IL}$	2.3	2.3	-	0.6	1
			3.0	3.0	-	0.4	1
		I_{OL} = 24 mA; V_I = V_{IL}	3.0	3.0	-	0.55	1
l _l	Input Leakage Current	$V_I = V_{CCA}$ or GND	0.9 - 4.5	0.9-4.5	-1.0	1.0	μA
I _{OFF}	Power-Off Leakage Current	<u>OE</u> = 0 V	0 0.9 – 4.5	0.9-4.5 0	-1.0 -1.0	1.0 1.0	μA
I _{CCA}	Quiescent Supply Current		0.9 - 4.5	0.9 – 4.5	-	2.0	μΑ
I _{CCB}	Quiescent Supply Current		0.9-4.5	0.9 – 4.5	-	2.0	μΑ
CCA + I _{CCB}	Quiescent Supply Current		0.9 - 4.5	0.9 – 4.5	-	4.0	μA
ΔI_{CCA}	Increase in $I_{\rm CC}$ per Input Voltage, Other Inputs at $V_{\rm CCA}$ or GND		4.5 3.6	4.5 3.6	-	10 5.0	μA
ΔI_{CCB}	Increase in I_{CC} per Input Voltage, Other Inputs at V_{CCA} or GND	$V_{I} = V_{CCA} - 0.6 V;$ $V_{I} = V_{CCA}$ or GND	4.5 3.6	4.5 3.6	-	10 5.0	μA
I _{OZ}	I/O Tri-State Output Leakage	V _O = 0 V	4.5	4.5	-	1.0	μA
	Current ($T_A = 25^{\circ}C$, $\overline{OE} = V_{CCA}$)	V _O = 4.5 V	4.5	4.5	-	10	1
		V _O = 0 to 4.5 V	2.5	3.5	-	105	1
			3.0	3.75	-	110	1
			3.3	3.0	-	75	1
			3.75	1.5	- 1	10	

TOTAL STATIC POWER CONSUMPTION (I_{CCA} + I_{CCB})

		-40°C to +85°C											
		V _{CCB} (V)											
	4.	.5	3.	.3	2	.8	1.	8	0.	.9			
V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
4.5		2		2		2		2		< 1.5	μA		
3.3		2		2		2		2		< 1.5	μA		
2.8		< 2		< 1		< 1		< 0.5		< 0.5	μA		
1.8		< 1		< 1		< 0.5		< 0.5		< 0.5	μA		
0.9		< 0.5		< 0.5		< 0.5		< 0.5		< 0.5	μA		

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power-up sequence of V_{CCA} and V_{CCB} will not damage the IC.

AC ELECTRICAL CHARACTERISTICS

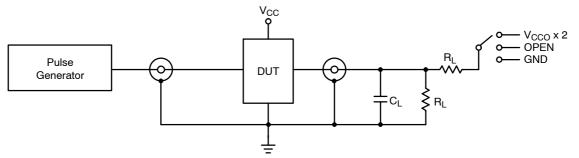
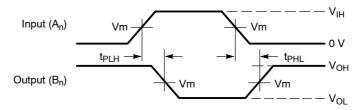
							–40°C t	o +85°C						
				V _{CCB} (V)										
			4	.5	3.3		2.8		1.8		1.5		1	
Symbol	Parameter	V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{PLH} ,	Propagation	4.5		3.0		3.2		3.4		3.7		4.0	nS	
t _{PHL}	Delay,	3.6		3.3		3.5		3.7		4.0		4.3		
(Note 1)	A _n to B _n	2.8		3.5		3.7		3.9		4.2		4.5		
		1.8		3.8		4.0		4.2		4.5		4.8		
		1.5		4.1		4.3		4.5		4.8		5.0		
t _{PZH} ,	Output	4.5		4.4		4.8		5.2		5.7		6.2	nS	
t _{PZL}	Enable,	3.3		4.7		5.1		5.5		6.0		6.5		
(Note 1)	OE to B _n	2.8		4.9		5.3		5.7		6.2		6.7		
		1.8		5.2		5.6		6.0		6.5		7.0		
		1.5		5.5		5.9		6.3		6.8		7.3		
t _{PHZ} ,	Output	4.5		4.4		4.8		5.2		5.7		6.2	nS	
t _{PLZ}	Disable,	3.3		4.7		5.1		5.5		6.0		6.5		
(Note 1)	OE to B _n	2.8		4.9		5.3		5.7		6.2		6.7		
		1.8		5.2		5.6		6.0		6.5		7.0		
		1.5		5.5		5.9		6.3		6.8		7.3		
t _{OSHL} ,	Output to	4.1		0.15		0.15		0.15		0.15		0.15	nS	
t _{OSLH}	Output Skew, Data to Out-	3.6		0.15		0.15		0.15		0.15		0.15		
(Note 1)	put	2.8		0.15		0.15		0.15		0.15		0.15		
		1.8		0.15		0.15		0.15		0.15		0.15		
		1.2		0.15		0.15		0.15		0.15		0.15		

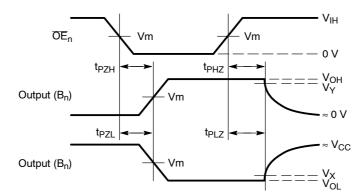
1. Propagation delays defined per Figures 3 and 4.

CAPACITANCE

Symbol	Parameter	Parameter Test Conditions					
C _{IN}	Control Pin Input Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$	3.5	pF			
C _{I/O}	I/O Pin Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	5.0	pF			
C _{PD}	Power Dissipation Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or V_{CCA},f = 10 MHz	20	pF			

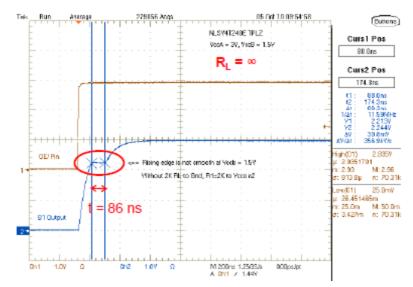
2. Typical values are at $T_A = +25^{\circ}C$. 3. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: $I_{CC(operating)} \cong C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where $I_{CC} = I_{CCA} + I_{CCB}$ and N_{SW} = total number of outputs switching.

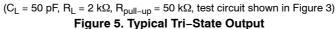



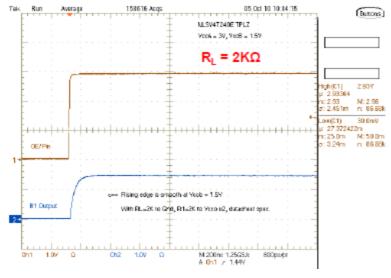

Figure 3. AC (Propagation Delay) Test Circuit

Test	Switch
t _{PLH} , t _{PHL}	OPEN
t _{PLZ} , t _{PZL}	V _{CCO} x 2
t _{PHZ} , t _{PZH}	GND
C_L = 15 pF or equivalent (include R_L = 2 k Ω or equivalent Z_{OUT} of pulse generator = 50 Ω	es probe and jig capacitance)

Waveform 1 – Propagation Delays

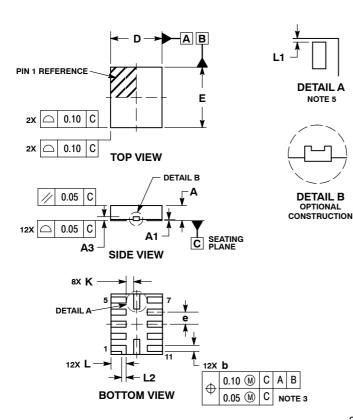

 t_{R} = t_{F} = 2.0 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns




Waveform 2 – Output Enable and Disable Times t_R = t_F = 2.0 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

	V _{CC}				
Symbol	3.0 V – 4.5 V	2.3 V – 2.7 V	1.65 V – 1.95 V	1.4 V – 1.6 V	0.9 V – 1.3 V
V _{mA}	V _{CCA} /2				
V _{mB}	V _{CCB} /2				
V _X	V _{OL} x 0.1				
V _Y	V _{OH} x 0.9				

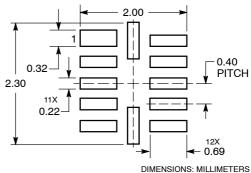
APPLICATIONS INFORMATION


 $(C_L = 50 \text{ pF}, R_L = \infty, R_{Pull-up} = 2 \text{ k}\Omega, \text{ test circuit shown in Figure 3})$ Figure 6. Typical Tri–State Output

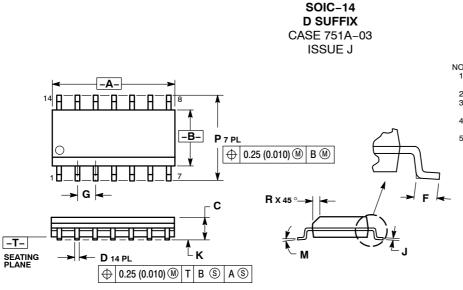
Typical tri–state output waveforms of the NLSX4T240E are shown in Figures 5 and 6. The shape of the output waveform during a tri–state condition corresponding to the disable time (t_{PHZ} , t_{pLZ}) depends on the configuration of the pull–up circuit. Figure 5 shows a smooth monotonically increasing exponentially waveform because a 2 k Ω resistance is connected between the output and ground.

Figure 6 shows that the output may have a 'shelf' or a short duration where the slope of the waveform is equal to zero if no load resistance is connected to ground. The NLSX4T240E was created from the NLSX4T240 to minimize the 'shelf' of the waveform during the disable time.

PACKAGE DIMENSIONS

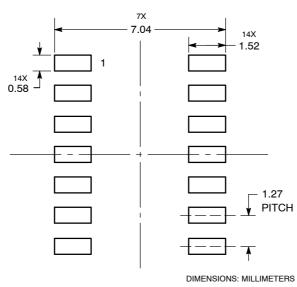

UQFN12 1.7x2.0, 0.4P CASE 523AE-01 **ISSUE A**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP. 4. MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE. FLASH 0.03 MAX ON BOTTOM SURFACE OF TERMINALS. 5. DETALL A SHOWS OPTIONAL
- 5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

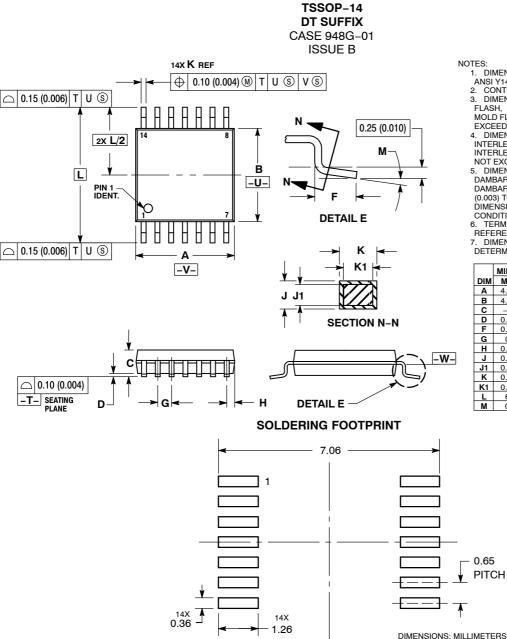

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.45	0.55	
A1	0.00	0.05	
A3	0.127 REF		
b	0.15	0.25	
D	1.70 BSC		
E	2.00 BSC		
е	0.40 BSC		
K	0.20		
L	0.45	0.55	
L1	0.00	0.03	
L2	0.15 REF		

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION AL LOWABI F


DIMENSION PLOCES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27 BSC		0.050 BSC		
J	0.19	0.25	0.008	0.009	
к	0.10	0.25	0.004	0.009	
м	0 °	7 °	0 °	7 °	
Р	5.80	6.20	0.228	0.244	
R	0.25	0.50	0.010	0.019	

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD

2. CONTROLLING DIMENSION. MILLING FER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
К	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0 °	8 °	0 °	8 °

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persores and reasonable attorney fees anding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NLJVHC1GT08DFT2G NLSX4373DMR2G NLSX5012MUTAG HV583GA-G MC10H641FNR2G NLSX0102FCT1G NLSX0102FCT2G NLSX4302EBMUTCG NLVSX4373DR2G PCA9306FMUTAG SY10H351JZ MC100EPT622MNG MAX9374AEKA+T MAX3378EETD+ MAX34405BEZT+ NLSX3014MUTAG NVT4556BUKZ NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG MAX34405BEZT+T NLSV4T3144MUTAG NSV12200LT1G NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T MAX3008EUP+T NLVPCA9306AMUTCG NLSX3013BFCT1G MAX9378EUA+T NLV7WBD3125USG NLV14504BDTG NLSX3012DMR2G NLSX5012DR2G MAX3391EEUD+T MAX3379EETD+ PI4ULS3V4857GEAEX MAX3391EEBC+T MAX14842ATE+T 74AVCH1T45FZ4-7 CLVC16T245MDGGREP HEF4104BT TC74LCX16245(EL,F) MC10H124FNG CAVCB164245MDGGREP 7WBD383USG NVT2001GM,115 CLVC8T245MRHLTEP 74LVC1G175GS,132