MC74HC393A

Dual 4－Stage Binary Ripple Counter

High－Performance Silicon－Gate CMOS

The MC74HC393A is identical in pinout to the LS393．The device inputs are compatible with standard CMOS outputs；with pullup resistors，they are compatible with LSTTL outputs．

This device consists of two independent 4－bit binary ripple counters with parallel outputs from each counter stage． $\mathrm{A} \div 256$ counter can be obtained by cascading the two binary counters．

Internal flip－flops are triggered by high－to－low transitions of the clock input．Reset for the counters is asynchronous and active－high． State changes of the Q outputs do not occur simultaneously because of internal ripple delays．Therefore，decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the HC393A．

Features

－Output Drive Capability： 10 LSTTL Loads
－Outputs Directly Interface to CMOS，NMOS，and TTL
－Operating Voltage Range： 2.0 to 6.0 V
－Low Input Current： $1 \mu \mathrm{~A}$
－High Noise Immunity Characteristic of CMOS Devices
－In Compliance with the JEDEC Standard No． 7 A Requirements
－Chip Complexity： 236 FETs or 59 Equivalent Gates
－NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements；AEC－Q100 Qualified and PPAP Capable
－These Devices are $\mathrm{Pb}-$ Free，Halogen Free and are RoHS Compliant

PIN $14=V_{C C}$
PIN 7 ＝GND

ON Semiconductor ${ }^{\circledR}$
http：／／onsemi．com

MARKING DIAGRAMS

14日且且日乐	14 HFHA日H月
HC393AG AWLYWW	HCC ${ }_{\text {393A }}$ ALYW：
$1 甘 甘 甘 甘 甘 甘 甘$	1 OHEVEXV
SOIC－14 NB	TSSOP－14

A＝Assembly Location
L，WL＝Wafer Lot
Y，YY＝Year
W，WW＝Work Week
G or •＝Pb－Free Package
（Note：Microdot may be in either location）
FUNCTION TABLE

Inputs		
Clock	Reset	
X	H	L
H	L	No Change
L	L	No Change
	L	No Change
L	L	Advance to
		Next State

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet．

MC74HC393A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air,SOIC Packaget TSSOP Packaget	500	mW
		450	
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds		
	SOIC or TSSOP Package		

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating: SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)		0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 600 \\ 500 \\ 400 \end{gathered}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{Vc}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit		
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$			
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{\text {lout }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V		
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	V		
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \\|_{\text {out }} \leq 20 \end{array} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V		
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \begin{array}{l} \\|_{\text {out }} \leq 2.4 \mathrm{~mA} \\ \\ \\ \\ \\ \\ \\ \\ \\|_{\text {out }} \mid \leq 50 \end{array} \leq 5.0 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$			

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued)

Symbol	Parameter	Test Conditions	V_{cc} V	Guaranteed Limit			Unit			
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \left\lvert\, \begin{array}{l} \mathrm{V}_{\text {in }} \\ \mid \mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \end{array}\right. \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V			
		$\begin{array}{ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \\|_{\mathrm{l}_{\text {out }} \mid \leq 2.4 \mathrm{~mA}} \\ & \\|_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \\|_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$				
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$			
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$			

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	$\underset{\mathrm{VC}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 15 \\ & 30 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 9 \\ 14 \\ 28 \\ 45 \end{gathered}$	$\begin{gathered} \hline 8 \\ 12 \\ 25 \\ 40 \end{gathered}$	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Clock to Q1 (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 36 \\ & 31 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock to Q2 (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 56 \\ & 34 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 105 \\ & 70 \\ & 45 \\ & 38 \end{aligned}$	$\begin{gathered} 180 \\ 100 \\ 55 \\ 48 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Clock to Q3 (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 130 \\ & 80 \\ & 44 \\ & 37 \end{aligned}$	$\begin{aligned} & 150 \\ & 105 \\ & 55 \\ & 47 \end{aligned}$	$\begin{aligned} & 180 \\ & 130 \\ & 70 \\ & 58 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t} \mathrm{tPLH}^{\prime}, \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Maximum Propagation Delay, Clock to Q4 (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 160 \\ 110 \\ 52 \\ 44 \end{gathered}$	$\begin{aligned} & 250 \\ & 185 \\ & 65 \\ & 55 \end{aligned}$	$\begin{gathered} 300 \\ 210 \\ 82 \\ 65 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to any Q (Figures 2 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 48 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 95 \\ & 65 \\ & 38 \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 75 \\ & 50 \\ & 43 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C_{PD}	Power Dissipation Capacitance (Per Counter) ${ }^{*}$	$\mathbf{p F}$	

* Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

TIMING REQUIREMENTS (Input $t_{r}=t_{f}=6 \mathrm{~ns}$)

Symbol	Parameter	$\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{CC}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
trec	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 25 \\ 15 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & \hline 30 \\ & 20 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock (Figure 1)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

PIN DESCRIPTIONS

INPUTS

Clock (Pins 1, 13)
Clock input. The internal flip-flops are toggled and the counter state advances on high-to-low transitions of the clock input.

OUTPUTS

Q1, Q2, Q3, Q4 (Pins 3, 4, 5, 6, 8, 9, 10, 11)

Parallel binary outputs Q4 is the most significant bit.

CONTROL INPUTS

Reset (Pins 2, 12)

Active-high, asynchronous reset. A separate reset is provided for each counter. A high at the Reset input prevents counting and forces all four outputs low.

MC74HC393A

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

*Includes all probe and jig capacitance
Figure 3. Test Circuit

EXPANDED LOGIC DIAGRAM

MC74HC393A

TIMING DIAGRAM

COUNT SEQUENCE

Count	Outputs				
	Q4	Q3	Q2	Q1	
	L	L	L	L	
1	L	L	L	H	
2	L	L	H	L	
3	L	L	H	H	
4	L	H	L	L	
5	L	H	L	H	
6	L	H	H	L	
7	L	H	H	H	
8	H	L	L	L	
9	H	L	L	H	
10	H	L	H	L	
11	H	L	H	H	
12	H	H	L	L	
13	H	H	L	H	
14	H	H	H	L	
15	H	H	H	H	

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC393ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC393ADR2G	SOIC-14 NB (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC393ADR2G*	SOIC-14 NB (Pb-Free)	$2500 /$ Tape \& Reel
MC74HC393ADTR2G	TSSOP-14 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MC74HC393A

PACKAGE DIMENSIONS

TSSOP-14
DT SUFFIX
CASE 948G
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74HC393A

PACKAGE DIMENSIONS

CASE 751A-03

ISSUE K

DETAILA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INCHES	
DILIM	MIN	MAX	MIN	MAX
A	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	$1.25 C$	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0		7°	0

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and the ©N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter ICs category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
HEF4516BT 069748E 569054R 634844F 74HC40102N 74HCT4024N NLV14040BDR2G TC74HC4040AF(EL,F) TC74VHC4040F(E,K,F 74VHC163FT XD4059 CD4015BF3A 74HC193PW,118 74VHC163FT(BJ) SN54HC4024J 74HC4017D.652 74HC4020D.652 74HC393D.652 74HC4040D.652 74HC4040D.653 74HC4060D.653 74HCT393D.652 74HCT4040D.653 74HC191D.652 74HC4060D.652 74HCT4040D. 652 HEF4040BT. 652 HEF4060BT. 653 HEF4521BT. 652 HEF4518BT. 652 HEF4520BT. 652 HEF4017BT. 652 74VHC4020FT(BJ) 74HCT4040PW,118 74HCT193PW,118 74HC393BQ-Q100X SN74AS161NSR 74HC390DB,112 74HC4060DQ100,118 74HC160D,652 74HC390DB,118 TC74HC7292AP(F) SN74ALS169BDR HEF4060BT-Q100J 74HC4017BQ-Q100X 74HC163PW. 112 74HC191PW. 112 74HC390PW. 112 74HC393DB. 118 74HC4024D. 652

