Dual 4-Stage Binary Ripple Counter

High–Performance Silicon–Gate CMOS

The MC74HC393A is identical in pinout to the LS393. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of two independent 4–bit binary ripple counters with parallel outputs from each counter stage. A \div 256 counter can be obtained by cascading the two binary counters.

Internal flip-flops are triggered by high-to-low transitions of the clock input. Reset for the counters is asynchronous and active-high. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the HC393A.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 236 FETs or 59 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

PIN ASSIGNMENT

CLOCK a	1●	14	V _{cc}
RESET a [2	13	СГОСК Р
Q1 _a [3	12	RESET b
Q2 _a [4	11] Q1 _b
Q3 _a [5	10] Q2 _b
Q4 _a [6	9] Q3 _b
gnd [7	8	Q4 _b
			1

MARKING DIAGRAMS

(Note: Microdot may be in either location)

FUNCTION TABLE

Inp		
Clock	Reset	Outputs
Х	Н	L
Н	L	No Change
L	L	No Change
_	L	No Change
\sim	L	Advance to
		Next State

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	V _{CC} DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	Vout DC Input Voltage, Output Voltage (Referenced to GND)			V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	(Figure 1)	CC = 2.0 V CC = 3.0 V CC = 4.5 V CC = 6.0 V	0 0 0 0	1000 600 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	v _{cc} v	–55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} \leq 20 \; \mu\text{A} \end{array}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.80	0.5 0.9 1.35 1.80	0.5 0.9 1.35 1.80	V
V _{OH}	Minimum High–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{aligned} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & _{\text{out}} \leq 2.4 \text{ mA} \\ _{\text{out}} \leq 4.0 \text{ mA} \\ _{\text{out}} \leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	–55 to 25°C	≤85°C	≤125°C	Unit
V _{OL}	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & I_{\text{out}} \leq 2.4 \text{ mA} \\ I_{\text{out}} \leq 4.0 \text{ mA} \\ I_{\text{out}} \leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \ \mu A$	6.0	4	40	160	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

	Parameter		Gu	aranteed Li	mit	Unit
Symbol		V _{CC} V	–55 to 25°C	≤85°C	≤125°C	
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 3)	2.0 3.0 4.5 6.0	10 15 30 50	9 14 28 45	8 12 25 40	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q1 (Figures 1 and 3)	2.0 3.0 4.5 6.0	70 40 24 20	80 45 30 26	90 50 36 31	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q2 (Figures 1 and 3)	2.0 3.0 4.5 6.0	100 56 34 20	105 70 45 38	180 100 55 48	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q3 (Figures 1 and 3)	2.0 3.0 4.5 6.0	130 80 44 37	150 105 55 47	180 130 70 58	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q4 (Figures 1 and 3)	2.0 3.0 4.5 6.0	160 110 52 44	250 185 65 55	300 210 82 65	ns
t _{PHL}	Maximum Propagation Delay, Reset to any Q (Figures 2 and 3)	2.0 3.0 4.5 6.0	80 48 30 26	95 65 38 33	110 75 50 43	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
			Typical @ 25°C, V _{CC} = 5.0 V			
C _{PD}	Power Dissipation Capacitance (Per Counter)*			35		pF

 C_{PD} Power Dissipation Capacitance (Per Counter)** Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (Input $t_r = t_f = 6$ ns)

			Gu	aranteed Li	mit	
Symbol	Parameter	v _{cc} v	–55 to 25°C	≤85°C	≤125°C	Unit
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	2.0 3.0 4.5 6.0	25 15 10 9	30 20 13 11	40 30 15 13	ns
t _w	Minimum Pulse Width, Clock (Figure 1)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 15	110 36 22 19	ns
t _w	Minimum Pulse Width, Reset (Figure 2)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 15	110 36 22 19	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

PIN DESCRIPTIONS

INPUTS

Clock (Pins 1, 13)

Clock input. The internal flip-flops are toggled and the counter state advances on high-to-low transitions of the clock input.

OUTPUTS

Q1, Q2, Q3, Q4 (Pins 3, 4, 5, 6, 8, 9, 10, 11)

Parallel binary outputs Q4 is the most significant bit.

CONTROL INPUTS Reset (Pins 2, 12)

Active-high, asynchronous reset. A separate reset is provided for each counter. A high at the Reset input prevents counting and forces all four outputs low.

SWITCHING WAVEFORMS

*Includes all probe and jig capacitance

Figure 3. Test Circuit

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

COUNT SEQUENCE

	Outputs				
Count	Q4	Q3	Q2	Q1	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	Н	L	
3	L	L	Н	Н	
4	L	Н	L	L	
5	L	Н	L	н	
6	L	Н	Н	L	
7	L	Н	Н	Н	
8	Н	L	L	L	
9	Н	L	L	Н	
10	Н	L	Н	L	
11	н	L	н	н	
12	Н	Н	L	L	
13	н	Н	L	н	
14	Н	Н	Н	L	
15	Н	н	Н	н	

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC393ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC393ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HC393ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HC393ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable

PACKAGE DIMENSIONS

TSSOP-14 DT SUFFIX CASE 948G **ISSUE B**

NOTES:

DTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION & DOES NOT INCLUDE

5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K

(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252 BSC	
Μ	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is no tor reseale in any man

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 HEF4516BT
 069748E
 569054R
 634844F
 74HC40102N
 74HCT4024N
 NLV14040BDR2G
 TC74HC4040AF(EL,F)
 TC74VHC4040F(E,K,F

 74VHC163FT
 XD4059
 CD4015BF3A
 74HC193PW,118
 74VHC163FT(BJ)
 SN54HC4024J
 74HC4017D.652
 74HC4020D.652

 74HC393D.652
 74HC4040D.652
 74HC4040D.653
 74HC4040D.653
 74HC191D.652
 74HC4060D.652

 74HCT4040D.652
 HEF4060BT.653
 HEF4521BT.652
 HEF4518BT.652
 HEF4520BT.652
 HEF4017BT.652

 74VHC4020FT(BJ)
 74HCT4040PW,118
 74HCT193PW,118
 74HC393BQ-Q100X
 SN74AS161NSR
 74HC390DB,112
 74HC4060D

 Q100,118
 74HC160D,652
 74HC390DB,118
 TC74HC7292AP(F)
 SN74ALS169BDR
 HEF4060BT-Q100J
 74HC4017BQ-Q100X

 74HC163PW.112
 74HC191PW.112
 74HC393DB.118
 74HC4024D.652