High Current Surface Mount PNP Silicon Switching Transistor for Load Management in Portable Applications

Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-30	Vdc
Collector-Base Voltage	V _{CBO}	-50	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	۱ _C	-1.0	Adc
Collector Current – Peak	I _{CM}	-2.0	А

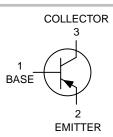
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	310 2.5	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	403	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	710 5.7	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 2)	R_{\thetaJA}	176	°C/W
Total Device Dissipation (Ref. Figure 8) (Single Pulse < 10 sec.)	P _{Dsingle}	575	mW
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

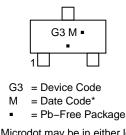
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 @ Minimum Pad

2. FR-4 @ 1.0 X 1.0 inch Pad


ON Semiconductor®

www.onsemi.com

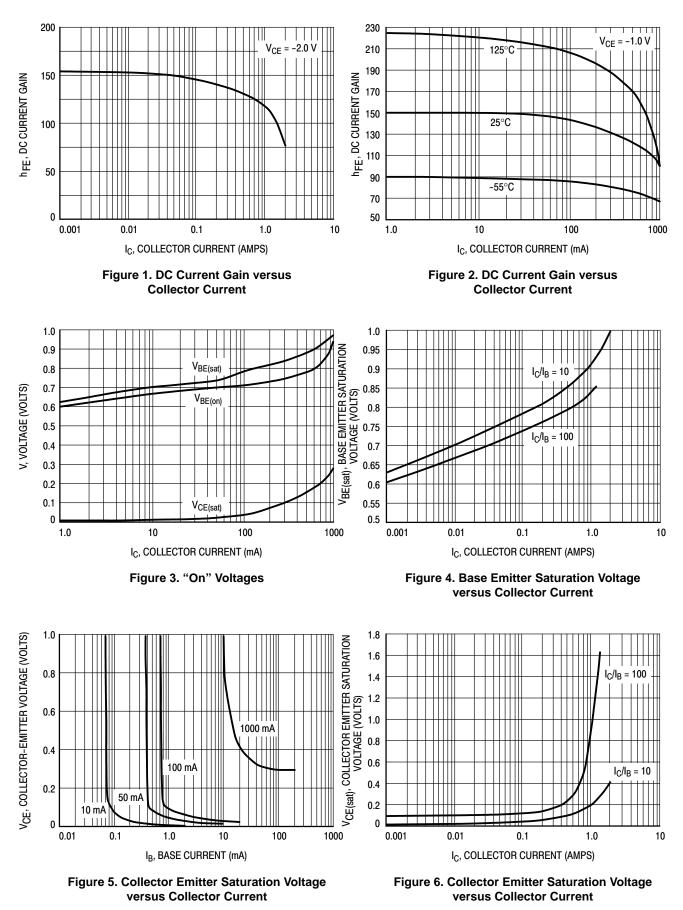

30 VOLTS, 2.0 AMPS PNP TRANSISTORS

SOT-23 (TO-236) CASE 318 STYLE 6

MARKING DIAGRAM

(Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION


Device	Package	Shipping [†]
MMBT589LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
NSVMMBT589LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage ($I_C = -10$ mAdc, $I_B = 0$)	V _{(BR)CEO}	 _30	_	Vdc
Collector-Base Breakdown Voltage ($I_C = -0.1 \text{ mAdc}, I_E = 0$)	V _{(BR)CBO}	-50	_	Vdc
Emitter – Base Breakdown Voltage $(I_E = -0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	-5.0	_	Vdc
Collector Cutoff Current ($V_{CB} = -30$ Vdc, $I_E = 0$)	I _{CBO}	_	-0.1	μAdc
Collector-Emitter Cutoff Current (V _{CES} = -30 Vdc)	I _{CES}	_	-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -4.0 Vdc)	I _{EBO}	_	-0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain (Note 3) (Figure 1) ($I_C = -1.0 \text{ mA}, V_{CE} = -2.0 \text{ V}$) ($I_C = -500 \text{ mA}, V_{CE} = -2.0 \text{ V}$) ($I_C = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V}$) ($I_C = 2.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	h _{FE}	100 100 80 40	 300 	_
Collector – Emitter Saturation Voltage (Note 3) (Figure 3) ($I_C = -0.5 \text{ A}, I_B = -0.05 \text{ A}$) ($I_C = -1.0 \text{ A}, I_B = 0.1 \text{ A}$) ($I_C = -2.0 \text{ A}, I_B = -0.2 \text{ A}$)	V _{CE(sat)}	- - -	-0.25 -0.30 -0.65	V
Base – Emitter Saturation Voltage (Note 3) (Figure 2) $(I_{C} = -1.0 \text{ A}, I_{B} = -0.1 \text{ A})$	V _{BE(sat)}	_	-1.2	V
Base – Emitter Turn–on Voltage (Note 3) ($I_C = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	V _{BE(on)}	-	-1.1	V
Cutoff Frequency ($I_C = -100$ mA, $V_{CE} = -5.0$ V, f = 100 MHz)	f _T	100	_	MHz
Output Capacitance (f = 1.0 MHz)	Cobo	-	15	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle $\leq 2\%$

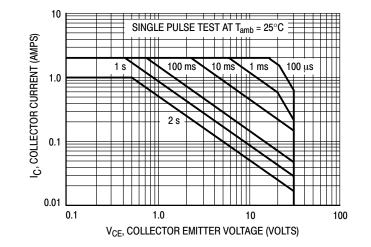


Figure 7. Safe Operating Area

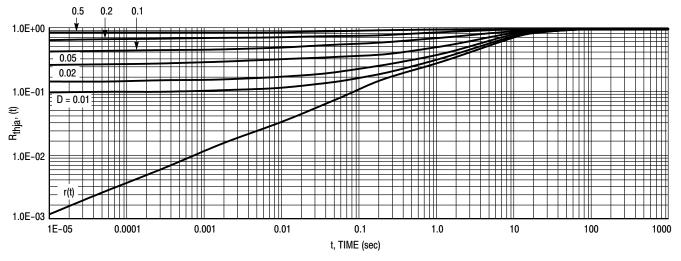
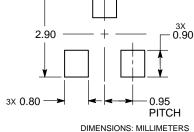



Figure 8. Normalized Thermal Response

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AR

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor and pplications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor products or any pattent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdicition or any devices arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that O

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B