FEATURES:

- Memory storage capacity:

$$
\begin{aligned}
& \text { IDT723623 - } 256 \times 36 \\
& \text { IDT723633 - } 512 \times 36 \\
& \text { IDT723643 - } 1,024 \times 36
\end{aligned}
$$

- Clocked FIFO buffering data from Port A to Port B
- Clock frequencies up to 83 MHz (8 ns access time)
- IDT Standard timing (using EF and FF) or First Word Fall Through Timing (using OR and IR flag functions)
- Programmable Almost-Empty and Almost-Full flags; each has three default offsets (8, 16 and 64)
- Serial or parallel programming of partial flags
- Port B bus sizing of 36 bits (long word), 18 bits (word) and 9 bits (byte)
- Big- or Little-Endian format for word and byte bus sizes
- Reset clears data and configures FIFO, Partial Reset clears data but retains configuration settings
- Mailbox bypass registers for each FIFO
- Free-running CLKA and CLKB may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Easily expandable in width and depth
- Auto power down minimizes power dissipation
- Available in a space-saving 128-pin Thin Quad Flatpack (TQFP)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT723623/723633/723643 are monolithic, high-speed, low-power, CMOS unidirectional Synchronous (clocked) FIFO memories which support

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION (CONTINUED)

clock frequencies up to 83 MHz and have read access times as fast as 8 ns . The 256/512/1,024 x36 dual-portSRAM FIFO buffers data from port A to port B. FIFO data on Port B can output in 36-bit, 18-bit, or 9-bitformats with a choice of Big-orLittle-Endian configurations.

These devices are synchronous (clocked) FIFOs, meaning each port employs a synchronous interface. All data transfers through a port are gated to the LOW-to-HIGH transition of a portclock by enable signals. The clocksfor each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/orbuses with synchronous control.

Communication betweeneach portmay bypasstheFIFO viatwo mailbox registers. The mailbox registers' width matches the selected Port B bus width. Each mailbox register has a flag ($\overline{\mathrm{MBF} 1}$ and $\overline{\mathrm{MBF}} 2$) to signal when new mail has been stored.

Two kinds of resetareavailable on these FIFOs: Resetand Partial Reset. Reset initializes the read and write pointers to the firstlocation of the memory array and selects serial flag programming, parallel flag programming, or one of three possible default flag offset settings, 8, 16 or 64 .

Partial Resetalso sets the read and write pointers to the firstlocation of the memory. Unlike Reset, any settings existing prior to Partial Reset (i.e., programmingmethodand partialflagdefaultoffsets) are retained. Partial Reset

PIN CONFIGURATION

is useful since it permits flushing of the FIFO memory without changing any configuration settings.

These devices have two modes of operation: Inthe IDT Standard mode, the first word written to an empty FIFO is deposited into the memory array. A read operation is required to access that word (along with all other words residing inmemory). Inthe FirstWord Fall Throughmode(FWFT), the firstword written to an empty FIFO appears automatically on the outputs, no read operation required (Nevertheless, accessing subsequent words does necessitate a formal read request). The state of the BE/FWFT pin during Reset determines the mode in use.

The FIFO has a combined Empty/Output Ready Flag ($\overline{\mathrm{EF}} / \mathrm{OR}$) and a combined Full/InputReady Flag($\overline{\mathrm{FF}} / \mathrm{IR}$). The $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions are selected in the IDT Standard mode. EF indicates whether or not the FIFO memory is empty. $\overline{\mathrm{FF}}$ shows whether the memory is full or not. The IR and OR functions are selected in the FirstWord Fall Through mode. IR indicates whetheror not theFIFO has availablememorylocations. OR shows whetherthe FIFO has data available for reading or not. Itmarks the presence of valid data on the outputs.

The FIFO has a programmable Almost-Empty flag ($\overline{\mathrm{AE}})$ and a programmable Almost-Full flag ($\overline{\mathrm{AF}}$). $\overline{\mathrm{AE}}$ indicates when a selected number of words remain in the FIFO memory achieve a predetermined "almost-emptystate". $\overline{\mathrm{AF}}$ indicates when the FIFO contains more than a selected number of words.
$\overline{\mathrm{FF}} / \mathrm{IR}$ and $\overline{\mathrm{AF}}$ are two-stage synchronized to the portclock that writes data into its array. $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{AE}}$ are two-stage synchronized to the portclock that reads data from its array. Programmable offsets for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$ are loaded in parallel using PortA or in serial viatheSDinput. The Serial Programming Mode pin ($\overline{\mathrm{SPM}}$) makesthis selection. Three default offsetsettings are also provided. The $\overline{\mathrm{AE}}$ threshold can be set at 8,16 or 64 locations from the empty boundary and the $\overline{\mathrm{AF}}$ threshold can be set at 8,16 or 64 locations from the full boundary. All these choices are made using the FS0 and FS1 inputs during Reset.

Two or more devices may be used in parallel to create wider data paths. In First Word Fall Through mode, more than one device may be connected in series to create greater word depths. The addition of external components is unnecessary.

If, at any time, the FIFO is not actively performing afunction, the chip will automatically power down. During the power down state, supply current consumption(ICC) is ata minimum. Initiating any operation (by activating control inputs) will immediately take the device out of the Power Down state.

The IDT723623/723633/723643 arecharacterized foroperation from0 ${ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available by special order. They are fabricated using IDT's high speed, submicron CMOS technology.

PIN DESCRIPTIONS

Symbol	Name	I/O	
A0-A35	PortA Data	I/O	36-bitbidirectional data portfor side A.
$\overline{\text { AE }}$	Almost-Empty Flag (Port B)	O	Programmable Almost-Empty flag synchronized to CLKB. It is LOW when the number of words in the FIFO is less than or equal to the value inthe Almost-Empty B offset register, X.
$\overline{\text { AF }}$	Almost-Full Flag (Port A)	O	Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of empty locations in the FIFO is less than or equal to the value in the Almost-Full A offset register, Y.
B0-B35	Port B Data	I/O	36-bitbidirectional data portfor sideB.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/0	Description
MBF2	Mail2 Register Flag	0	$\overline{\text { MBF2 }}$ is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is LOW. $\overline{\text { MBF2 }}$ is set HIGH by a LOW-to-HIGH transition of CLKA when a Port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is set HIGH following either a Reset ($\overline{\text { RS2 }}$) or Partial Reset ($\overline{\mathrm{PRS}})$.
$\overline{\mathrm{RS} 1 / \mathrm{RS} 2}$	Resets	I	A LOW on both pins initializes the FIFO read and write pointers to the first location of memory and sets the PortB outputregisterto all zeroes. ALOW-to-HIGHtransition on $\overline{\mathrm{SS1}}$ selects the programming method (serial or parallel) and one of three programmable flagdefault offsets. Italso configures PortBforbus size and endian arrangement. FourLOW-to-HIGH transitions of CLKA andfourLOW-to-HIGHtransitions of CLKB mustoccur while $\overline{\text { RS1 }}$ is LOW.
$\overline{\text { PRS }}$	Partial Reset	I	A LOW on this pininitializesthe FIFO read and write pointerstothe firstlocation of memory and sets the PortB output registerto all zeroes. During Partial Reset, the currently selected bus size, endian arrangement, programming method (serial or parallel), and programmable flag settings are all retained.
SIZE ${ }^{(1)}$	BusSize Select (Port B)	I	A HIGH on this pin when BM is HIGH selects byte bus (9-bit) size on Port B. A LOW on this pin when BM is HIGH selects word (18-bit) bus size. SIZE works with BM and BE to select the bus size and endian arrangement for Port B. The level of SIZE must be static throughout device operation.
$\overline{S P M}^{(1)}$	Serial Programming Mode	I	ALOW onthis pin selects serial programming of partial flag offsets. AHIGH on this pin selects parallel programming or default offsets (8, 16, or 64).
W/ $\bar{R} A$	PortAWrite/ Read Select	I	A HIGH selects a write operation and a LOW selects a read operation on Port A for a LOW-to-HIGH transition of CLKA. The AO-A 35 outputs are in the HIGH impedance state when W/ $\bar{R} A$ is $H I G H$.
W/RB	PortBWrite/ ReadSelect	I	A LOW selects a write operation and a HIGH selects a read operation on Port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the HIGH impedance state when $\bar{W} /$ RB is LOW.

NOTE:

1. BM, SIZE and $\overline{S P M}$ are not TTL compatible. These inputs should be tied to $V C C$ or GND.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR
TEMPERATURE RANGE (Unless otherwise noted) (1)

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to 7	V
$\mathrm{VI}^{(2)}$	Input Voltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	Output Voltage Range	-0.5 to Vcc +0.5	V
IIK	Input Clamp Current (VI<0 or $\mathrm{VI}>\mathrm{Vcc}$)	± 20	mA
Iok	Output Clamp Current (Vo $=<0$ or $\mathrm{Vo}>\mathrm{Vcc}$)	± 50	mA
Iout	Continuous Output Current (Vo=0 to Vcc)	± 50	mA
ICC	Continuous Current Through Vcc or GND	± 400	mA
TstG	Storage Temperature Range	-65to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDEDOPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage(Commercial)	4.5	5.0	5.5	V
VIH	High-Level InputVoltage (Commercial)	2	-	-	V
VIL	Low-Level InputVoltage (Commercial)	-	-	0.8	V
IOH	High-Level OutputCurrent(Commercial)	-	-	-4	mA
IoL	Low-Level OutputCurrent(Commercial)	-	-	8	mA
TA	OperatingTemperature(Commercial)	0	-	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREEAIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT723623 IDT723633 IDT723643 Commerical $\text { tCLK }=12,15 \mathrm{~ns}$			Unit
				Min.	Typ. ${ }^{(2)}$	Max.	
VOH	OutputLogic "1" Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=-4 \mathrm{~mA}$	2.4	-	-	V
Vol	Output Logic "0" Voltage	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{lOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	InputLeakage Current(Any Input)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ICC2 ${ }^{(3)}$	Standby Current (with CLKA \& CLKB running)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0V	-	-	8	mA
ICC3 ${ }^{(3)}$	Standby Current(noclocks running)	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0V	-	-	1	mA
$\mathrm{CIN}{ }^{(4)}$	InputCapacitance	$V_{1}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	-	4	-	pF
COUT ${ }^{(4)}$	OutputCapacitance	$\mathrm{Vo}=0$,	$f=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. Industrial temperature range is available by special order.
2. All typical values are at $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).
4. Characterized valules, not curently tested.

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT723623/723633/723643 with CLKA andCLKB settofs. Alldatainputs and dataoutputs changestateduring each clock cycle to consume thehighestsupply current. Data outputs weredisconnected to normalize the graph to a zero capacitance load. Once the capacitance load per data-output channel and the number of IDT723623/723633/723643 inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:
$\mathrm{PT}=\operatorname{Vcc} x[\operatorname{lcC}(f)+(\mathrm{N} x \Delta \mathrm{lcc} x d c)]+\Sigma\left(\operatorname{CL} \times \mathrm{Vcc}^{2} \mathrm{X}\right.$ fo $)$
where:
$\mathrm{N}=\quad$ number of used outputs $=36$-bit (long word), 18-bit (word) or 9-bit (byte) bus size
$\Delta I C C \quad=\quad$ increase in power supply current for each input at a TTL HIGH level
dc $\quad=\quad$ duty cycle of inputs at a TTL HIGH level of 3.4 V
$\mathrm{CL}=$ outputcapacitance load
fo $=$ switching frequency of an output

Figure 1. Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE
(Commercial: Vcc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial				Unit
		IDT723623L12 IDT723633L12 IDT723643L12		IDT723623L15 IDT723633L15 IDT723643L15		
		Min.	Max.	Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	83	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	12	-	15	-	ns
tCLKH	Pulse Duration, CLKA or CLKB HIGH	5	-	6	-	ns
tCLKL	Pulse Duration, CLKA and CLKB LOW	5	-	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	3	-	4	-	ns
tENS1	Setup Time, $\overline{C S A}$ and W/RA before CLKA \uparrow; $\overline{C S B}$ and $\bar{W} / R B$ before CLKB \uparrow	4	-	4.5	-	ns
tENS2	Setup Time, ENA and MBA before CLKA \uparrow; ENB and MBB before CLKB \uparrow	3	-	4.5	-	ns
tRSTS	Setup Time, $\overline{\mathrm{RS1}}$ or $\overline{\mathrm{PRS}}$ LOW before CLKA \uparrow or CLKB ${ }^{(2)}$	5	-	5	-	ns
tFSS	Setup Time, FS0 and FS1 before $\overline{\mathrm{RS1}}$ HIGH	7.5	-	7.5	-	ns
tBES	Setup Time, BE/FWFT before $\overline{\text { RS1 }}$ HIGH	7.5	-	7.5	-	ns
tSPMS	Setup Time, $\overline{\text { SPM }}$ before $\overline{\mathrm{RS1}} \mathrm{HIGH}$	7.5	-	7.5	-	ns
tSDS	Setup Time, FS0/SD beforeCLKA \uparrow	3	-	4	-	ns
tsENS	Setup Time, FS1//SEN before CLKA \uparrow	3	-	4	-	ns
tFWS	Setup Time, $\overline{\text { FWFT }}$ before CLKA \uparrow	0	-	0	-	ns
セD	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	0.5	-	1	-	ns
tenh	Hold Time, $\overline{C S A}, \mathrm{~W} / \overline{\mathrm{R} A}, \mathrm{ENA}$, and MBA after CLKA \uparrow; $\overline{\mathrm{CSB}}, \bar{W} / R B, E N B$, and MBB after CLKB \uparrow	0.5	-	1	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RS1}}$ or $\overline{\mathrm{PRS}}$ LOW after CLKA \uparrow or CLKB $\uparrow^{(2)}$	4	-	4	-	ns
tFSH	Hold Time, FS0 and FS1 after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tBEH	Hold Time, BE/FWFT after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tSPMH	Hold Time, $\overline{\text { SPM }}$ after $\overline{\mathrm{RS} 1} \mathrm{HIGH}$	2	-	2	-	ns
tSDH	Hold Time, FSO/SD after CLKA \uparrow	0.5	-	1	-	ns
tSENH	Hold Time, FS1//SEN HIGH after CLKA \uparrow	0.5	-	1	-	ns
tSPH	Hold Time, FS1/ $\overline{\text { SEN }}$ HIGH after $\overline{\text { RS1 }}$ HIGH	2	-	2	-	ns
tSKEW1 ${ }^{(3)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{FF}} / \mathrm{IR}$	5	-	7.5	-	ns
tSKEW ${ }^{(3,4)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$	12	-	12	-	ns

NOTES:

1. Industrial temperature range is available by special order.
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
4. Design simulated, not tested.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30 PF

(Commercial: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter		Comm	ercial		Unit
		$\begin{aligned} & \hline \text { IDT723623L12 } \\ & \text { IDT723633L12 } \\ & \text { IDT723643L12 } \end{aligned}$		$\begin{aligned} & \text { IDT723623L15 } \\ & \text { IDT723633L15 } \\ & \text { IDT723643L15 } \end{aligned}$		
		Min.	Max.	Min.	Max.	
tA	Access Time, CLKA \uparrow to A0-A35 and CLKB \uparrow to B0-B35	2	8	2	10	ns
tWFF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{FF}} / \mathrm{IR}$	2	8	2	8	ns
tREF	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{EF}} / \mathrm{OR}$	1	8	1	8	ns
tPAE	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{AE}}$	1	8	1	8	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AF}}$	1	8	1	8	ns
tPMF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{MBF} 1} \mathrm{LOW}$ or $\overline{\mathrm{MBF2}} \mathrm{HIGH}$ and CLKB \uparrow to $\overline{\mathrm{MBF}} \mathrm{LOW}$ or MBF1 HIGH	0	8	0	8	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B} 0-\mathrm{B} 35{ }^{(2)}$ and CLKB \uparrow to $\mathrm{AO}-\mathrm{A} 35{ }^{(3)}$	2	8	2	12	ns
tMDV	Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B35 Valid	2	8	2	10	ns
tRSF	Propagation Delay Time, $\overline{\mathrm{RS} 1}$ or $\overline{\mathrm{PRS}}$ LOW to $\overline{\mathrm{AE}} \mathrm{LOW}, \overline{\mathrm{AF}}$ HIGH, $\overline{\mathrm{MBF} 1} \mathrm{HIGH}$, and $\overline{\mathrm{MBF}}$ 2 HIGH	1	10	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ and W/ $\overline{\mathrm{R} A}$ LOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\overline{\mathrm{W} / R B}$ HIGH to B0-B35Active	2	6	2	10	ns
tDIS	Disable Time, $\overline{\mathrm{CSA}}$ or W/RA HIGH to A0-A35 at high-impedance and $\overline{\mathrm{CSB}}$ HIGH or $\overline{\text { W/RB }}$ LOW to B0-B35 at high-impedance	1	6	1	8	ns

NOTES:

1. Industrial temperature range is available by special order
2. Writing data to the mail1 register when the BO-B35 outputs are active and MBB is HIGH.
3. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.

SIGNAL DESCRIPTION

RESET ($\overline{\text { RS1 }} / \overline{\mathrm{RS} 2)}$

Afterpower up, a Resetoperation mustbe performed by providing aLOW pulse to $\overline{\mathrm{RS} 1}$ and $\overline{\mathrm{RS} 2}$ simultaneously. Afterwards, the FIFO memory of the IDT723623/723633/723643 undergoes a complete reset by taking its Reset ($\overline{\mathrm{RS} 1}$ and $\overline{\mathrm{RS} 2}$) input LOW for at least four Port A clock (CLKA) and four Port B clock (CLKB) LOW-to-HIGH transitions. The Reset inputs can switch asynchronously to the clocks. A Reset initializes the internal read and write pointers and forces the Full/Input Ready flag(㢄/IR) LOW, the Empty/Output Ready flag($\overline{\mathrm{EF}} / \mathrm{OR}$) LOW, the Almost-Empty flag ($\overline{\mathrm{AE}})$ LOW, and the AlmostFullflag $(\overline{\mathrm{AF}}) \mathrm{HIGH}$. AReset $(\overline{\mathrm{RS1}})$ also forces the Mailboxflag $(\overline{\mathrm{MBF}})$ of the parallelmailbox register HIGH , and atthe same time the $\overline{\mathrm{RS} 2}$ and $\overline{\mathrm{MBF} 2}$ operate likewise. After a Reset, the FIFO's Full/Input Ready flag is setHIGH after two write clock cycles to begin normal operation.

ALOW-to-HIGH transition ontheFIFOReset($(\overline{\mathrm{RS} 1})$ inputlatches the value of the Big-Endian (BE) input for determining the order by which bytes are transferred through PortB.

ALOW-to-HIGH transition on the FIFO Reset($\overline{\mathrm{RS} 1}$) inputalsolatches the values of the Flag Select (FS0, FS1) and Serial Programming Mode ($\overline{\text { SPM }}$) inputs for choosing the Almost-Full and Almost-Empty offset programming method (for details see Table 1, Flag Programming, and Almost-Empty and Almost-Fullflag offsetprogramming section).The relevant Reset timing diagram can be found in Figure 3.

PARTIAL RESET ($\overline{\text { PRS }})$

The FIFO memory of the IDT723623/723633/723643 undergoes a limited resetbytaking its associated Partial Reset ($\overline{\mathrm{PRS}})$ inputLOW for at least fourPortA clock (CLKA) andfourPortBclock (CLKB)LOW-to-HIGHtransitions. ThePartial Resetinput canswitch asynchronously totheclocks. APartial Reset initializes the internal read and write pointers and forces the Full/Input Ready flag ($\overline{\mathrm{FF}} / \mathrm{IR}$) LOW, the Empty/Output Ready flag ($\overline{\mathrm{EF}} / \mathrm{OR}$) LOW, the AlmostEmpty flag $(\overline{\mathrm{AE}})$ LOW, and the Almost-Full flag $(\overline{\mathrm{AF}}) \mathrm{HIGH}$. A Partial Resetalso forces the Mailbox flag (MBF1, $\overline{\text { MBF2 }}$) of the parallel mailbox register HIGH. AfteraPartial Reset, the FIFO's Full/InputReady flag issetHIGH aftertwo clock cycles to begin normal operation. See Figure 4, Partial Reset (IDTStandard and FWFT Modes) for the relevant timing diagram.

Whateverflag offsets, programming method (parallel or serial), andtiming mode(FWFTorIDTStandardmode) are currently selected at thetime a Partial Reset is initiated, those settings will be remain unchanged upon completion of the reset operation. A Partial Reset may be useful in the case where reprogramming a FIFO following a Reset would be inconvenient.

BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)

- ENDIAN SELECTION

This is a dual purpose pin. At the time of Reset, the BE selectfunction is active, permitting achoice of Big-orLittle-Endianbyte arrangementfordata read from PortB. This selection determines the order by which bytes (or words) of dataaretransferred throughthis port. Forthefollowing illustrations, assumethat a byte (or word) bus size has been selected for Port B. (Note that when Port B is configured for along word size, the Big-Endianfunction has no application and the BE input is a "don't care" ${ }^{1}$.)

A HIGH on the BE//FWFT input when the Reset ($\overline{\mathrm{RS} 1})$ input goes from LOW to HIGH will select a Big-Endian arrangement. In this case, the most significant byte (word) of the long word written to Port A will be read from Port B first; the least significant byte (word) of the long word written to Port A will be read from PortB last.

ALOW ontheBE/FWFT inputwhentheReset($\overline{\mathrm{RS} 1}$) inputgoesfrom LOW toHIGH will selectaLittle-Endian arrangement. Inthis case, theleastsignificant byte (word) of the long word written to Port A will be read from Port B first; the mostsignificant byte (word) of the long word written to Port A will be read from PortB last. Refer to Figure 2 for an illustration of the BE function. See Figure 3(Reset) for an Endian selecttiming diagram.

- TIMING MODE SELECTION

AfterReset, theFWFT selectfunctionis active, permitting achoicebetween two possible timing modes: IDT Standard mode or First Word Fall Through (FWFT) mode. Once the Reset ($\overline{\mathrm{RS} 1}$) inputis HIGH, aHIGH on theBE/ $\overline{\mathrm{FWFT}}$ inputduring thenextLOW-to-HIGHtransition ofCLKA andCLKB will selectIDT Standard mode. This mode uses the Empty Flag function ($\overline{\mathrm{EF}}$) to indicate whether or not there are any words present in the FIFO memory. It uses the Full Flag function $(\overline{\mathrm{FF}})$ to indicate whether or notthe FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using a formal read operation.

Oncethe Reset $(\overline{\mathrm{RS} 1})$ inputisHIGH, aLOW ontheBE/FWFT inputduring the nextLOW-to-HIGHtransition of CLKA and CLKB will selectFWFT mode. This mode usesthe Output Ready function(OR)to indicate whether ornotthere is valid data atthe data outputs (B0-B35). Italso uses the Input Ready function (IR) to indicate whether or not the FIFO memory has any free space for writing. Inthe FWFT mode, the first word writtento an empty FIFO goes directly to data outputs, no read requestnecessary. Subsequent words mustbe accessed by performing a formal read operation.

Following Reset, the level applied to the BE/FWFT input to choose the desired timing mode must remain static throughout FIFO operation. Refer to Figure 3 (Reset) for a First Word Fall Through select timing diagram.

PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULL FLAGS

Two registers in the IDT723623/723633/723643 are used to hold the offsetvaluesforthe Almost-Empty and Almost-Fullflags. The Almost-Emptyflag ($\overline{\mathrm{AE}}$)OffsetregisterislabeledX and Almost-Fullflag ($\overline{\mathrm{AF}}$)Offsetregisteris labeled Y. The offset registers can be loaded with preset values during the reset of the FIFO, programmed in parallel using the FIFO's Port A data inputs, or programmed in serial using the Serial Data(SD) input(seeTable 1). $\overline{\text { SPM, }}$, $\mathrm{FS} 0 /$ SD and FS1/ SEN function the same way in both IDT Standard and FWFT modes.

- PRESET VALUES

Toload a FIFO's Almost-Empty flag and Almost-Full flag Offset registers with one of the three preset values listed in Table 1, the Serial Program Mode (SPM) and at least one of the flag-select inputs mustbe HIGH during the LOW-to-HIGH transition of the Reset input ($\overline{\mathrm{RS} 1})$. For example, to load the preset value of 64 into X and $Y, \overline{S P M}, F S 0$ and FS1 mustbe HIGH when $\overline{R S 1}$ returns HIGH. For the relevant preset value loading timing diagram, see Figure 3.

[^0]
TABLE 1 - FLAG PROGRAMMING

$\overline{\text { SPM }}$	FS1/SEN	FSO/SD	$\overline{\mathrm{RS} 1}$	X AND Y REGISTERS ${ }^{(1)}$
H	H	H	\uparrow	64
H	H	L	\uparrow	16
H	L	H	\uparrow	8
H	L	L	\uparrow	Parallel programming via Port A
L	H	L	\uparrow	Serial Programming via SD
L	H	H	\uparrow	reserved
L	L	H	\uparrow	reserved
L	L	L	\uparrow	reserved

NOTE:

1. X register holds the offset for $\overline{\mathrm{AE}} ; \mathrm{Y}$ register holds the offset for $\overline{\mathrm{AF}}$.

-PARALLEL LOAD FROM PORT A

To program the X and Y registers from Port A , perform a Reset on with $\overline{\text { SPM }}$ HIGH and FSO and FS1 LOW during the LOW-to-HIGH transition of $\overline{\text { RS1 }}$. After this reset is complete, the first two writes to the FIFO do not store data in RAM. The first two write cycles load the offset registers in the order Y, X. On the third write cycle the FIFO is ready to be loaded with a data word. See Figure 5, Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT modes), for a detailed timing diagram. The Port A datainputs used by the offsetregisters are(A7-A0), (A8-A0), or (A9-A0) for the IDT723623, IDT723633 or IDT723643, respectively. Thehighestnumberedinputisusedasthemostsignificantbitofthebinary number in each case. Valid programming valuesfor the registers range from

1 to 252 for the IDT723623; 1 to 508 for the IDT723633; and 1 to 1,020 for the IDT723643. After all the offset registers are programmed from Port A the FIFO begins normal operation.
— SERIAL LOAD
To programthe Xand Y registers serially, initiatea Reset with $\overline{S P M} L O W$, FSO/SDLOW andFS1/SENHIGH during theLOW-to-HIGHtransition of $\overline{\text { RS1 }}$. After this reset is complete, the X and Y register values are loaded bit-wise through the FS0/SD input on each LOW-to-HIGH transition of CLKA that the FS1/SEN input is LOW. There are 16-, 18 - or 20-bit writes are needed to complete the programming for the IDT723623, IDT723633, or IDT723643, respectively. The two registers are written inthe order Y, X. Each registervalue

TABLE 2 - PORT A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	W/扁A	ENA	MBA	CLKA	Data A (AO-A35) I/O	PORT FUNCTION
H	X	X	X	X	High-Impedance	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFO write
L	H	H	H	\uparrow	Input	Mail1 write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	None
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail2 read (set $\overline{\text { MBF2 HIGH) }}$

TABLE 3 - PORT B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	$\overline{\text { W } / R B ~}$	ENB	MBB	CLKB	Data B (B0-B35) I/O	PORT FUNCTION
H	X	X	X	X	High-Impedance	None
L	L	L	X	X	Input	None
L	L	H	L	\uparrow	Input	None
L	L	H	H	\uparrow	Input	Mail2write
L	H	L	L	X	Output	None
L	H	H	L	\uparrow	Output	FIFO read
L	H	L	H	X	Output	None
L	H	H	H	\uparrow	Output	Mail1 read (set $\overline{\text { MBF1 }}$ HIGH)

can be programmed from 1 to 508 (IDT723623), 1 to 1,020 (IDT723633), or 1 to 2,044 (IDT723643).

Whentheoptionto programtheoffset registers serially is chosen, the Full/ Input Ready ($\overline{\mathrm{FF}} / \mathrm{IR}$) flag remains LOW until all register bits are written. $\overline{\mathrm{FF}} / \mathrm{IR}$ is setHIGH by the LOW-to-HIGH transition of CLKA after the lastbitis loaded to allow normal FIFO operation.

See Figure 6, Serial Programming of the Almost-Full Flag and AlmostEmpty Flag Offset Values after Reset (IDT Standard and FWFT Modes).

FIFO WRITE/READ OPERATION

Thestate ofthe PortAdata(A0-A35) linesiscontrolled by PortAChipSelect ($\overline{\mathrm{CSA}})$ and Port AWrite/ReadSelect(W/ $\bar{R} A$). The A0-A35 lines are inthe Highimpedancestatewheneither $\overline{C S A}$ orW/ $\bar{R} A$ is HIGH. TheAO-A35lines areactive outputs when both $\overline{C S A}$ and $W / \bar{R} A$ are LOW.

Data is loaded into the FIFO from the AO-A35 inputs on aLOW-to-HIGH transition of CLKA when $\overline{C S A}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and $\overline{\mathrm{FF}} / \mathrm{R}$ is HIGH (see Table2). FIFO writes on Port A are independent of any concurrent reads on Port B.

The PortBcontrol signals sare identical tothose of PortA withtheexception thatthePortBWrite/Read select ($\bar{W} / R B$) isthe inverse ofthePortAWrite/Read select (W/RA). The state of the Port B data ($\mathrm{B} 0-\mathrm{B} 35$) lines is controlled by the Port BChip Select ($\overline{\mathrm{CSB}}$) and PortBWrite/Read select ($\overline{\mathrm{W}} / \mathrm{RB}$). TheB0-B35 lines are inthehigh-impedancestate wheneither $\overline{C S B}$ is $H I G H o r \bar{W} / R B$ is $L O W$. The B0-B35 lines are active outputs when $\overline{\mathrm{CSB}}$ is LOW and $\overline{\mathrm{W}} / \mathrm{RB}$ is HIGH .

Data is read from the FIFO to the B0-B35 outputs by a LOW-to-HIGH transition of CLKB when $\overline{C S B}$ is LOW, $\bar{W} / R B$ is HIGH, ENB is HIGH, MBB is LOW, and $\overline{\mathrm{EF}} / \mathrm{OR}$ is HIGH (see Table 3). FIFO reads on Port B are independent of any concurrent writes on Port A.

The setup and hold time constraints to the port clocks for the port Chip Selects andWrite/Read selects are only for enabling write and read operations andarenotrelatedtohigh-impedancecontrol ofthe dataoutputs. Ifaportenable is LOW during a clock cycle, the port's Chip SelectandWrite/Read selectmay change states during the setup and hold time window of the cycle.

When operating the FIFO in FWFT mode and the Output Ready flag is LOW, the next word written is automatically sentto the FIFO's output register bythe LOW-to-HIGHtransition of the portclock thatsets the Output Ready flag HIGH. WhentheOutputReady flagisHIGH, dataresiding intheFIFO'smemory array is clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select.

When operating the FIFO in IDT Standard mode, regardless of whether the Empty Flag is LOW or HIGH, data residing in the FIFO's memory array is
clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select. Port A Write timing diagram can be found in Figure 7. Relevant port B Read timing diagrams togetherwith Bus-Matching and Endian select canbefound in Figure 8, 9 and 10.

SYNCHRONIZED FIFO FLAGS

Each FIFO is synchronized to its port clock through at least two flip-flop stages. This is doneto improveflag-signal reliability by reducingthe probability of metastable events when CLKA and CLKB operate asynchronously to one another. $\overline{\mathrm{FF}} / I \mathrm{R}$, and $\overline{\mathrm{AF}}$ are synchronized to CLKA. $\overline{\mathrm{EF}} / \mathrm{OR}$ and $\overline{\mathrm{AE}}$ are synchronized to CLKB. Table 4 shows the relationship of each portflag to the number of words stored in memory.

EMPTY/OUTPUTREADYFLAGS(EF/OR)

These are dual purposeflags. IntheFWFTmode, the Output Ready (OR) function is selected. WhentheOutput-Ready flag isHIGH, new data is present inthe FIFO output register. Whenthe Output Ready flag is LOW, the previous data word is present inthe FIFO output register and attempted FIFO reads are ignored.

Inthe IDTStandardmode, the Empty Flag($\overline{\mathrm{EF}})$ function is selected. When the Empty Flag is HIGH, data is available in the FIFO's memory for reading to the output register. When the Empty Flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

The Empty/Output Ready flag of a FIFO is synchronized to the portclock that reads data from its array (CLKB). For both the FWFT and IDT Standard modes, the FIFO read pointer is incremented each time a new word is clocked to its output register. The state machine that controls an Output Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is empty, empty +1 , or empty +2 .

InFWFT mode, from the time a word is written to a FIFO, it can be shifted to the FIFO output register in a minimum of three cycles of the Output Ready flag synchronizing clock. Therefore, an Output Ready flag is LOW if a word in memory is the next data to be sent to the FIFO output register and threecycles of the portClock that reads data from the FIFO have notelapsed since thetime the word was written. The Output Ready flag of the FIFO remains LOW until the third LOW-to-HIGH transition of the synchronizing clock occurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO outputregister.

In IDT Standardmode, fromthetime a wordis writtentoaFIFO, the Empty Flag will indicate the presence of dataavailable for reading ina minimum of two

TABLE 4 - FIFO FLAG OPERATION (IDT STANDARD AND FWFT MODES)

Number of Words in $\mathrm{FIFO}^{(1,2)}$			Synchronized to CLKB		Synchronized to CLKA	
IDT723623 ${ }^{(3)}$	IDT723633 ${ }^{(3)}$	IDT723643 ${ }^{(3)}$	EF/OR	$\overline{\mathrm{A}} \overline{\mathrm{E}}$	$\overline{\text { AF }}$	FF/IR
0	0	0	L	L	H	H
1 to X	1 to X	1 to X	H	L	H	H
$(\mathrm{X}+1)$ to [256-($\mathrm{Y}+1)$]	$(\mathrm{X}+1)$ to [512-($\mathrm{Y}+1)$]	$(\mathrm{X}+1)$ to $[1,024-(\mathrm{Y}+1)$]	H	H	H	H
(256-Y) to 255	(512-Y) to 511	$(1,024-Y)$ to 1,023	H	H	L	H
256	512	1,024	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the memory count.
3. X is the almost-empty offset used by $\overline{\mathrm{AE}} . \mathrm{Y}$ is the almost-full offset used by $\overline{\mathrm{AF}}$. Both X and Y are selected during a FIFO reset or Port A programming.
cycles of the Empty Flag synchronizing clock. Therefore, anEmpty Flag is LOW if a word in memory is the next data to be sent to the FIFO output register and twocycles of the portClock thatreads datafromtheFIFO have notelapsed since the time the word was written. The Empty Flag of the FIFO remains LOW until the second LOW-to-HIGHtransition of the synchronizing clockoccurs, forcing the Empty Flag HIGH; only then can data be read.

ALOW-to-HIGH transition onan Empty/Output Ready flag synchronizing clockbegins the firstsynchronization cycle of a write ifthe clocktransition occurs attime tSKEW1 or greater after the write. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 10 and 11).

FULL/INPUT READY FLAGS (FF/IR)

This is a dual purpose flag. In FWFT mode, the Input Ready (IR) function is selected. InIDT Standard mode, the Full Flag ($\overline{\mathrm{FF}})$ function is selected. For bothtiming modes, whenthe Full/Input Ready flag is HIGH , a memory location is free in the FIFO to receive new data. No memory locations are free whenthe Full/Input Ready flag is LOW and attempted writes to the FIFO are ignored.

The Full/Input Ready flag of a FIFO is synchronized to the port clock that writes datato its array (CLKA). ForbothFWFT and IDT Standard modes, each timeawordis writtentoaFIFO, its write pointerisincremented. Thestate machine that controls a Full/Input Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read from aFIFO, its previous memory location is ready to be written to in a minimum of two cycles of the Full/Input Ready flag synchronizing clock. Therefore, an Full/InputReady flagisLOW iflessthantwo cycles of the Full/InputReady flag synchronizing clock have elapsed sincethe nextmemory write locationhasbeen read. ThesecondLOW-to-HIGHtransition onthe Full/Input Ready flag synchronizing clock afterthe read setsthe Full/Input Ready flag HIGH.

ALOW-to-HIGHtransition onaFull/InputReadyflag synchronizing clock beginsthefirstsynchronizationcycle of a readifthe clocktransitionoccurs attime tSKEW1 orgreater afterthe read. Otherwise, the subsequent clock cycle canbe the first synchronization cycle (see Figures 13 and 14).

ALMOST-EMPTY FLAG ($\overline{\mathrm{AE}})$

The Almost-Empty flag ofaFIFO is synchronizedtotheportclockthatreads datafromits array (CLKB). The state machinethatcontrols an Almost-Empty flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty+1, oralmost-empty+2. The Almost-Empty state is defined by the contents of register X. These registers are loaded with preset values during a FIFO reset, programmed from Port A, or programmedserially (seeAlmost-Empty flagand Almost-Fullflagoffsetprogramming section). An Almost-Empty flag is LOW when its FIFO contains X or less words and is HIGH when its FIFO contains ($\mathrm{X}+1$) or more words. Note that a data word present in the FIFO output register has been read from memory.

TwoLOW-to-HIGHtransitions ofthe Almost-Emptyflag synchronizing clock are required after aFIFO write for its Almost-Empty flag to reflect the new level offill. Therefore, the Almost-Empty flag of aFIFO containing $(X+1)$ ormorewords remains LOWiftwo cycles of its synchronizing clock have notelapsed sincethe write thatfilled the memory to the $(\mathrm{X}+1)$ level. An Almost-Empty flagis setHIGH by the second LOW-to-HIGHtransition of its synchronizing clock aftertheFIFO write thatfills memory tothe $(\mathrm{X}+1$) level. ALOW-to-HIGHtransition of an AlmostEmpty flag synchronizing clock begins the firstsynchronization cycleifitoccurs at time tSKEW2 or greater after the write that fills the FIFO to (X+1) words. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle. (See Figure 15).

ALMOST-FULL FLAG ($\overline{\mathrm{AF}})$

The Almost-Fullflag of aFIFO is synchronized to the portclock that writes data to its array. The state machine that controls an Almost-Full flag monitorsa write pointerand read pointercomparatorthat indicates whentheFIFOmemory statusisalmost-full, almost-full-1, oralmost-full-2. The Almost-Full stateisdefined by the contents of register Y. These registers are loaded with preset values during a FIFO resetor, programmed from PortA, or programmed serially (see Almost-Empty flagand Almost-Fullflag offsetprogrammingsection). An AlmostFull flag is LOW when the number of words in its FIFO is greater than or equal to (256-Y), (512-Y), or (1,024-Y) forthe IDT723623, IDT723633, or IDT723643 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to [256-($\mathrm{Y}+1)]$, $[512-(\mathrm{Y}+1)]$, or $[1,024-(\mathrm{Y}+1)]$ for the IDT723623, IDT723633, or IDT723643 respectively. Note that a data word present in the FIFO output register has been read from memory.

Two LOW-to-HIGH transitions of the Almost-Full flag synchronizing clock are required after a FIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Fullflag of aFIFO containing[256/512/1,024-(Y+1)] or less words remains LOW if two cycles of its synchronizing clock have not elapsed since the read that reduced the number of words in memory to [256/ 512/1,024-(Y+1)]. An Almost-Full flagissetHIGHby the second LOW-to-HIGH transition of its synchronizing clockaftertheFIFO read that reduces the number of words in memoryto[256/512/1,024-(Y+1)]. ALOW-to-HIGHtransition of an Almost-Full flag synchronizing clock begins the first synchronization cycle ifit occurs attimetSKEW2 orgreaterafter the read that reducesthe number of words inmemoryto[256/512/1024-(Y+1)]. Otherwise, the subsequentsynchronizing clock cycle may be the first synchronization cycle. (See Figure 16).

MAILBOX REGISTERS

Two 36-bit bypass registers are on the IDT723623/723633/723643 to passcommandandcontrol informationbetweenPortA and PortBwithoutputting it in queue. The Mailbox Select (MBA, MBB) inputs choose between a mail register and aFIFO for a port datatransfer operation. The usable width of both the Mail1 and Mail2 registers matches the selected bus size for PortB.

ALOW-to-HIGHtransitiononCLKA writes datatotheMail1 Registerwhen aPortA write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA withMBAHIGH. Ifthe selected Port B bus size is 36 bits, the usable width of the Mail1 register employs data lines A0-A35. If the selected Port B bus size is 18 bits, then the usable width of the Mail1 Register employs datalines A0-A17. (Inthis case, A18-A35 are don't care inputs.) Ifthe selected PortB bussize is 9 bits, then the usable width of the Mail1 Register employs data lines A0-A8. (Inthis case, A9-A35 are don'tcare inputs.)

A LOW-to-HIGH transition on CLKB writes B0-B35 data to the Mail2 Register when a Port B write is selected by $\overline{C S B}, \bar{W} / R B$, and ENB with MBB HIGH. If the selected Port B bus size is 36 bits, the usable width of the Mail2 employs data lines B0-B35. If the selected Port B bus size is 18 bits, then the usable width oftheMail2Registeremploys datalinesB0-B17. (Inthiscase,B18B35aredon'tcare inputs.) Ifthe selected PortBbus size is 9 bits, thenthe usable width of the Mail2 Register employs datalines B0-B8. (Inthis case, B9-B35are don'tcare inputs.)

Writing datato a mail register sets its corresponding flag ($\overline{\mathrm{MBF}}$ or $\overline{\mathrm{MBF}}$) LOW. Attempted writes to a mail register are ignored while the mail flagisLOW.

When data outputs of a portare active, the dataonthe bus comes from the FIFO output register when the port Mailbox Select input is LOW and from the mail register when the port Mailbox Select input is HIGH.

TheMail1 RegisterFlag (MBF1) is setHIGH byaLOW-to-HIGHtransition on CLKB when a Port B read is selected by $\overline{C S B}, \bar{W} / R B$, and ENB with MBB

HIGH. Fora36-bitbussize, 36 bits of mailbox data are placed onB0-B35. For an 18-bitbus size, 18 bits of mailbox data are placed onB0-B17. (Inthis case, B18-B35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data are placed on B0-B8. (In this case, B9-B35 are indeterminate.)

TheMail2RegisterFlag(MBF2) is setHIGH byaLOW-to-HIGHtransition on CLKA when a Port A read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH.

For a 36-bit bus size, 36 bits of mailbox data are placed on A0-A35. For an 18-bitbus size, 18 bits of mailbox data are placed on A0-A17. (Inthis case, A18-A35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data are placed on A0-A8. (In this case, A9-A35 are indeterminate.)

The data in a mail register remains intact after it is read and changes only when new datais writtentothe register. The EndianSelectfeature has no effect on mailbox data. For mail register and mail register flag timing diagrams, see Figure 17 and 18.

BUS SIZING

The Port B bus can be configured in a 36-bit long word, 18-bit word, or 9-bit byte format for data read from the FIFO. The levels applied to the PortB Bus Size Select (SIZE) and the Bus-Match Select (BM) determine the PortB bus size. These levels should be static throughout FIFO operation. Both bus size selections are implemented atthe completion of Reset, by thetimethe Full/ Input Ready flag is set HIGH, as shown in Figure 2.

Two differentmethods for sequencing datatransfer are available forPort B when the bus size selection is either byte-or word-size. They are referred to as Big-Endian (mostsignificantbytefirst) and Little-Endian (leastsignificant bytefirst). ThelevelappliedtotheBig-EndianSelect(BE) inputduringtheLOW-
to-HIGH transition of $\overline{\mathrm{RS} 1}$ selects the endian method that will be active during FIFO operation. BE is a don't care input when the bus size selected for PortB islong word. The endian method is implemented atthe completion of Reset, by the time the Full/Input Ready flag is set HIGH, as shown in Figure 2.

Only 36-bit long word data is written to or read from the FIFO memory onthe IDT723623/723633/723643. Bus-matching operations are done after data is read from the FIFO RAM. These bus-matching operations are not available when transferring data via mailbox registers. Furthermore, both the word-and byte-sizebus selections limitthe width ofthe databus that canbe used for mail register operations. Inthis case, only those byte lanes belonging to the selected word- or byte-size bus can carry mailbox data. The remaining data outputs will be indeterminate. The remaining datainputs will bedon'tcare inputs. For example, when a word-size bus is selected, then mailbox data can be transmitted only between A0-A17 and B0-B17. When a byte-size bus is selected, then mailbox data can be transmitted only between A0-A8 and B0B8. (See Figures 17 and 18).

BUS-MATCHING FIFO READS

Data is read from the FIFO RAM in 36-bitlong word increments. If along word bus size is implemented, theentire long word immediately shiftstotheFIFO output register. If byte or word size is implemented on PortB, only the first one ortwo bytes appear on the selected portion of the FIFO output register, with the rest of the long word stored in auxiliary registers. Inthis case, subsequent FIFO reads output the rest of the long word to the FIFO output register in the order shown by Figure 2.

When reading data from FIFO in byte or word format, the unused B0-B35 outputs are indeterminate.

BYTE ORDER ON PORT A:

BE	BM	SIZE
X	L	X

BYTE ORDER ON PORT B:

BE	BM	SIZE
H	H	L

B35-B27

1st: Read from FIFO

2nd: Read from FIFO
(b) WORD SIZE - BIG-ENDIAN

BE	BM	SIZE
L	H	L

Figure 2. Bus sizing

Figure 3. Reset Loading X and Y with a Preset Value of Eight (IDT Standard and FWFT Modes)

Figure 4. Partial Reset (IDT Standard and FWFT Modes)

NOTE:

1. $\overline{C S A}=$ LOW, $W \bar{R} A=H I G H, M B A=$ LOW. It is not necessary to program offset register on consecutive clock cycles.

Figure 5. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset. (IDT Standard and FWFT Modes)

NOTES:

1. It is not necessary to program offset register bits on consecutive clock cycles. FIFO write attempts are ignored until $\overline{\mathrm{FF}} / \mathrm{IR}$ is set HIGH.
2. Programmable offsets are written serially to the $S D$ input in the order $\overline{A F}$ offset (Y) and $\overline{A E}$ offset (X).

Figure 6. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

Figure 7. Port A Write Cycle Timing for FIFO (IDT Standard and FWFT Modes)

NOTE:

1. Data read from the FIFO

DATA SIZE TABLE FOR FIFO LONG-WORD READS

SIZE MODE (1) (SELECT AT RESET)		DATA WRITTEN TO FIFO			DATA READ FROM FIFO					
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0	B35-B27	B26-B18	B17-B9	B8-B0
L	X	X	A	B	C	D	A	B	C	D

NOTE:

1. BE is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 8. Port B Long-Word Read Cycle (IDT Standard and FWFT Modes)

NOTE:

1. Unused word B18-B35 are indeterminate.

DATA SIZE TABLE FOR WORD READS

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO1				$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	DATA READ FROM FIFO	
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		B17-B9	B8-B0
H	L	H	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & B \\ & D \end{aligned}$
H	L	L	A	B	C	D	1 2	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$

NOTE:

1. $B E$ is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 9. Port B Word Read Cycle Timing (IDT Standard and FWFT Modes)

NOTE:

1. Unused bytes B9-B17, B18-B26, and B27-B35 are indeterminate.

DATA SIZE TABLE FOR BYTE READS

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO				$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	DATA READ FROM FIFOB8-BO
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		
							1	A
							2	B
H	H	H	A	B	C	D	3	C
							4	D
							1	D
							2	C
H	H	L	A	B	C	D	3	B
							4	A

NOTE:

1. BE is selected at Reset: BM and SIZE must be static throughout device operation.

Figure 10. Port B Byte Read Cycle Timing (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for OR to transition HIGH and to clock the next word to the FIFO output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of OR HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, OR is set LOW by the last word or byte read from the FIFO, respectively.

Figure 11. OR Flag Timing and First Data Word Fall Through when FIFO is Empty (FWFT Mode)

NOTES:

1. tsKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{EF}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw1, then the transition of EF HIGH may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, $\overline{\mathrm{EF}}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 12. $\overline{\text { EF }}$ Flag Timing and First Data Read when FIFO is Empty (IDT Standard Mode)

NOTES:

1. TSKEW 1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IR to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskew1, then IR may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tsKEW1 is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively.

Figure 13. IR Flag Timing and First Available Write when FIFO is Full (FWFT Mode)

NOTES:

1. tSKEw is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{F F}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then FF may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tskewt is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 14. $\overline{\text { FF }}$ Flag Timing and First Available Write when FIFO is Full (IDT Standard Mode)

NOTES:

1. tsKewz is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{A E}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEwz, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO Write $(\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W), F I F O$ read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO output register has been read from the FIFO.
3. If Port B size is word or byte, $\overline{A E}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 15. Timing for $\overline{A E}$ when the FIFO is Almost-Empty (IDT Standard and FWFT Modes).

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEW2, then $\overline{\mathrm{AF}}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO Write $(\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W), F I F O$ read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO output register has been read from the FIFO.
3. $\mathrm{D}=$ Maximum FIFO Depth $=256$ for the IDT723623, 512 for the IDT723633, 1,024 for the IDT723643.
4. If Port B size is word or byte, tsKEW2 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 16. Timing for $\overline{A F}$ when the FIFO is Almost-Full (IDT Standard and FWFT Modes).

NOTE:

1. If Port B is configured for word size, data can be written to the Mail1 Register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data (B18-B35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail1 Register using A0-A8
(A9-A35 are don't care inputs). In this second case, B0-B8 will have valid data (B9-B35 will be indeterminate).
Figure 17. Timing for Mail1 Register and MBF1 Flag (IDT Standard and FWFT Modes)

NOTE:

1. If Port B is configured for word size, data can be written to the Mail2 Register using B0-B17 (B18-B35 are don't care inputs). In this first case A0-A17 will have valid data (A18-A35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail2 Register using B0-B8 (B9-B35 are don't care inputs). In this second case, A0-A8 will have valid data (A9-A35 will be indeterminate).

Figure 18. Timing for Mail2 Register and $\overline{\text { MBF2 }}$ Flag (IDT Standard and FWFT Modes)

NOTES:

1. Mailbox feature is not supported in depth expansion applications. (MBA + MBB tie to GND)
2. Transfer clock should be set either to the Write Port Clock (CLKA) or the Read Port Clock (CLKB), whichever is faster.
3. The amount of time it takes for EF/OR of the last FIFO in the chain to go HIGH (i.e. valid data to appear on the last FIFO's outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO: ($\mathrm{N}-1)^{*}\left(4^{*}\right.$ transfer clock) $+3^{*}$ TrCLK, where N is the number of FIFOs in the expansion and TrcLK is the CLKB period.
4. The amount of time it takes for $\overline{F F} / I R$ of the first FIFO in the chain to go HIGH after a word has been read from the last FIFO is the sum of the delays for each individual FIFO: $(\mathrm{N}-1)^{\star}\left(3^{*}\right.$ transfer clock $)+2^{\star}$ Twclk, where N is the number of FIFOs in the expansion and TwcLk is the CLKA period.

Figure 19. Block Diagram of $256 \times 36,512 \times 36,1,024 \times 36$ Synchronous FIFO Memory with Programmable Flags used in Depth Expansion Configuration

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

NOTE:

1. Includes probe and jig capacitance.

Figure 20. Load Circuit and Voltage Waveforms.

ORDERING INFORMATION

NOTES:

1. Industrial temperature range is available by special order.
2. Green parts are available. For specific speeds and packages please contact your sales office.

DATASHEET DOCUMENT HISTORY

10/04/2000
03/21/2001
08/01/2001 02/04/2009
pgs. 1 through 28. pgs 6 and 7. pgs. 1, 6, 8, 9 and 28. pgs. 1, and 28.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for FIFO category:
Click to view products by IDT manufacturer:
Other Similar products are found below :
72V82L20PAGI CY7C425-25LMB CY7C454-14LMB 72V2113L7-5BCGI 72V201L10PFG CY7C464A-10JI 5962-88666903YA 5962-
8986302YA 5962-9071503MXA 5962-9961502QYA 5962-9158505MXA 5962-8986305ZA 5962-8986305UA 5962-8986303XA 5962-
8986302ZA 5962-89523052A 5962-8866904XA 72V201L15PFGI 72225LB10JG 7202LA25JGI 7202LA15PDGI 7206L15JG 7208L20JG
72241L10JG 723622L15PFG 72T72115L5BBGI 72V36110L7-5PFGI 72V3660L6PFG CY7C419-15JC CY7C425-20VXC CY7C429-20VC
7202LA15JGI 7203L15TPGI 7208L25JGI 7281L15PAGI 72T18125L5BBI 72T36125L10BB 72T36125L5BBGI 72V3690L6PFG
CY7C433-10AC CY7C4251-10AI CY7C433-10AXC 5962-8986306YA 7281L12PAG 72V3660L7-5PFGI 72V231L15PFGI 7204L12JG8
7206L25TPGI 7202LA50JG8 72210L10TPG

[^0]: NOTE:

 1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused inputs) must not be left open, rather they must be either HIGH or LOW.
