1. General description

The 74LVC3GU04 is a triple unbuffered inverter.

Inputs can be driven from either 3.3 V or 5 V devices. These features allow the use of these devices in a mixed 3.3 V and 5 V environment.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- ±24 mA output drive at V_{CC} = 3.0 V
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C.

3. Ordering information

Table 1. Orderi	ing information			
Type number	Package			
	Temperature range	Name	Description	Version
74LVC3GU04DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2
74LVC3GU04DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74LVC3GU04GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1
74LVC3GU04GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1 \times 0.5$ mm	SOT1089
74LVC3GU04GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3 \times 2 \times 0.5$ mm	SOT996-2

nexperia

Triple unbuffered inverter

Type number	Package								
	Temperature range	Name	Description	Version					
74LVC3GU04GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body $1.6 \times 1.6 \times 0.5$ mm	SOT902-2					
74LVC3GU04GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.2 \times 1.0 \times 0.35$ mm	SOT1116					
74LVC3GU04GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1.0 \times 0.35$ mm	SOT1203					

Table 1 Ordering information continued

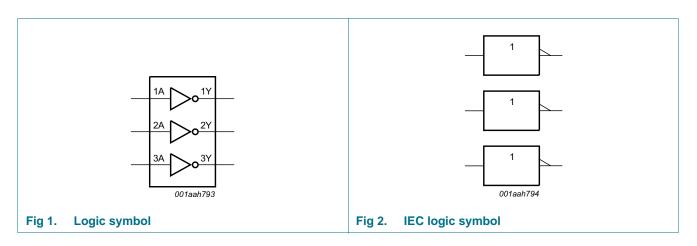
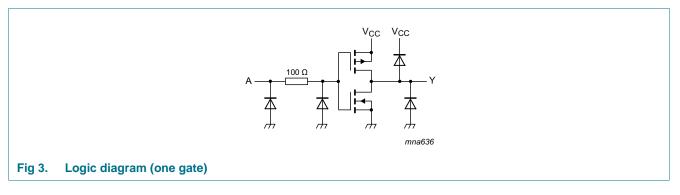

Marking 4.

Table 2. Marking codes

Type number	Marking code ^[1]
74LVC3GU04DP	VU04
74LVC3GU04DC	VU4
74LVC3GU04GT	VU4
74LVC3GU04GF	YD
74LVC3GU04GD	VU4
74LVC3GU04GM	VU4
74LVC3GU04GN	YD
74LVC3GU04GS	YD

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Functional diagram 5.



74LVC3GU04 Product data sheet

Nexperia

74LVC3GU04

Triple unbuffered inverter

Pinning information 6.

74LVC3GU04 1 8 1A Vcc 3Y 2 7 1Y 74LVC3GU04 3 6 2A 3A 1A 🛛 8 V_{CC} 3Y 2 7 1Y GND 2Y 4 5 6 3A 2A 3 5 2Y GND 4 001aac021 Transparent top view mnb120 Pin configuration SOT505-2 and SOT765-1 Pin configuration SOT833-1, SOT1089, Fig 4. Fig 5. SOT1116 and SOT1203 74LVC3GU04 terminal 1 Vcc index area ω 1Y 7 74LVC3GU04 1A 8 1 V_{CC} 1A 6 3Y 3A 2 3Y 2 7 1Y 3 6 3 5 2A 2A 3A 2Y 4

6.1 Pinning

GND 4 5 2Y GND 001aag056 001*aal*098 Transparent top view Transparent top view Pin configuration SOT996-2 Pin configuration SOT902-2 Fig 6. Fig 7.

6.2 Pin description

Table 3.Pin description

Symbol	Pin	Description	
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2	
1A, 2A, 3A	1, 3, 6	7, 5, 2	data input
GND	4	4	ground (0 V)
1Y, 2Y, 3Y	7, 5, 2	1, 3, 6	data output
V _{CC}	8	8	supply voltage

7. Functional description

Table 4.Function table

Input nA	Output nY
L	Н
Н	L

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
Vo	output voltage	Active mode	<u>[1]</u>	-0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
I _O	output current	$V_{O} = 0 V \text{ to } V_{CC}$		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[2]	-	250	mW
T _{stg}	storage temperature			-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

For TSSOP8 packages: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.
 For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K.
 For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6.Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	-	20	ns/V
		V_{CC} = 2.7 V to 5.5 V	-	10	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = -40	°C to +85 °C	1				
VIH	HIGH-level input voltage	V_{CC} = 1.65 V to 5.5 V	$0.75\times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	$0.25 \times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -100 \ \mu\text{A};$ $V_{CC} = 1.65 \ \text{V} \text{ to } 5.5 \ \text{V}$	$V_{CC}-0.1$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 100 \ \mu\text{A};$ $V_{CC} = 1.65 \ \text{V} \text{ to } 5.5 \ \text{V}$	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
I	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	±0.1	±1	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 A$	-	0.1	4	μA
CI	input capacitance		-	5	-	pF

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = -40	°C to +125 °C	1		I		
V _{IH}	HIGH-level input voltage	$V_{CC} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$	$0.8 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	$0.2\times V_{CC}$	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = -100 \ \mu A;$ $V_{CC} = 1.65 \ V \ to \ 5.5 \ V$	V _{CC} - 0.1	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 100 \ \mu A;$ $V_{CC} = 1.65 \ V \text{ to } 5.5 \ V$	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.70	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.60	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.80	V
		$I_{O} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.80	V
1	input leakage current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	±1	μA
lcc	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to 5.5 V}; I_{O} = 0 \text{ A}$	-	-	4	μA

[1] All typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol	Parameter	Conditions	–40 °C to +85 °C		–40 °C to +125 °C		Unit	
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nA to nY; see Figure 8 [2]						
		V _{CC} = 1.65 V to 1.95 V	0.5	2.3	5.0	0.5	6.3	ns
		V_{CC} = 2.3 V to 2.7 V	0.3	1.8	4.0	0.3	4.0	ns
		V _{CC} = 2.7 V	0.3	2.6	4.5	0.3	5.6	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.3	2.3	3.7	0.3	4.5	ns
		V_{CC} = 4.5 V to 5.5 V	0.3	1.7	3.0	0.3	3.8	ns

74LVC3GU04

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol	Parameter	Conditions		–40 °C to +85 °C		–40 °C to +125 °C		Unit	
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
C _{PD}	power dissipation capacitance	$V_{I} = GND$ to V_{CC} ; $V_{CC} = 3.3 V$	<u>[3]</u>	-	7	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

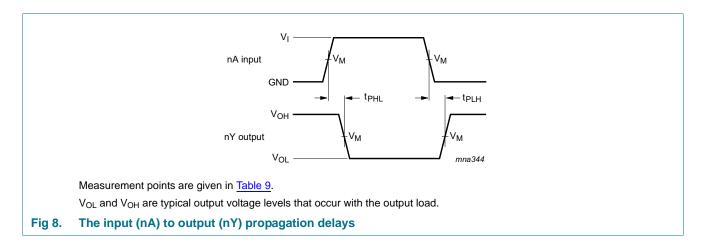
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

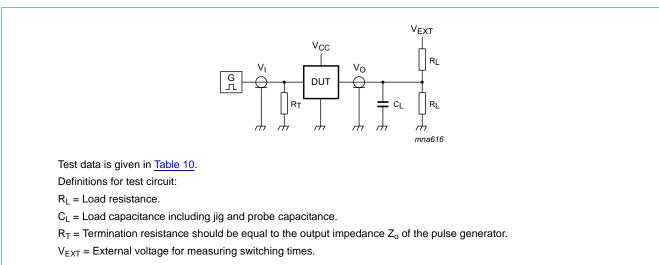

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

12. Waveforms


Table 9.Measurement points

Supply voltage	Input	Output
V _{cc}	V _M	V _M
1.65 V to 1.95 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.3 V to 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$

Nexperia

74LVC3GU04

Triple unbuffered inverter

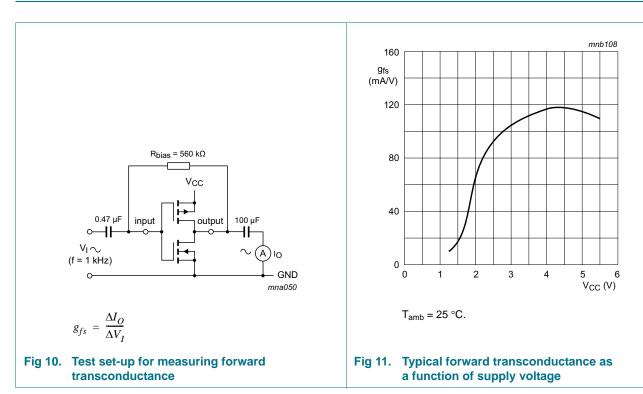
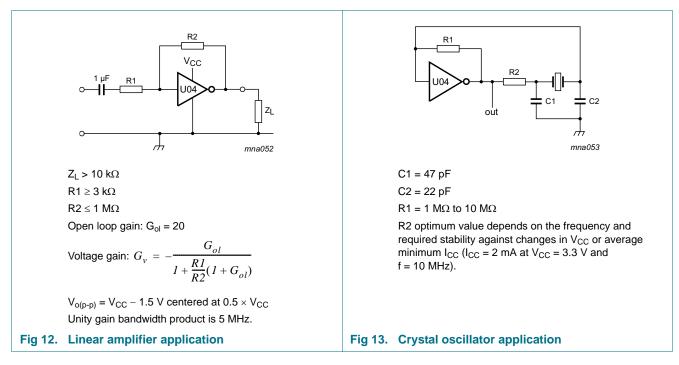


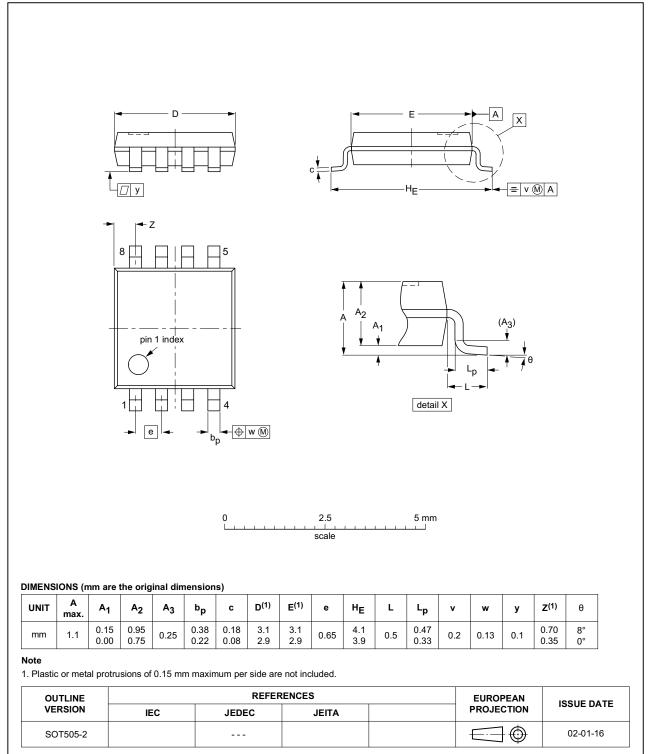
Fig 9. Test circuit for measuring switching times

Table 10. Test data

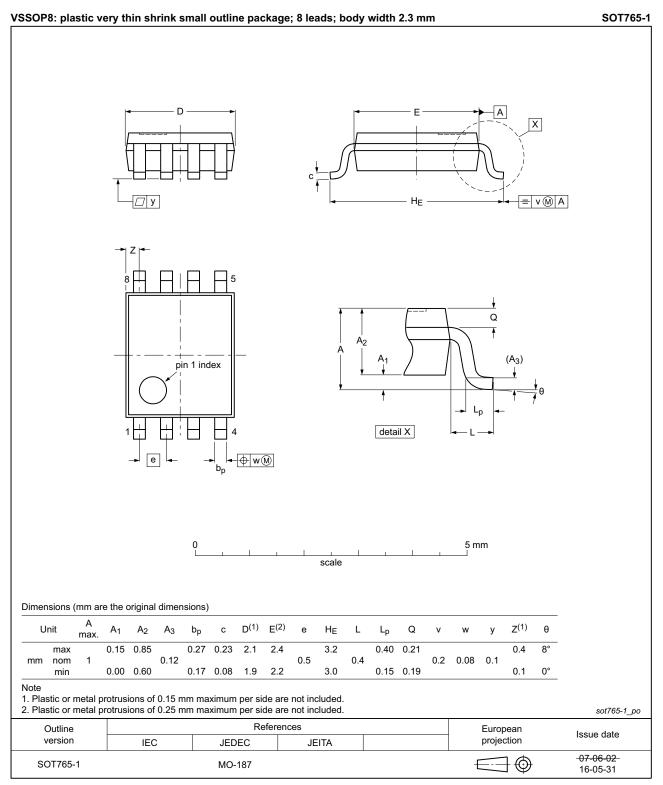

Supply voltage	Input	Input		Load	
V _{CC}	VI	$t_r = t_f$	CL	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	\leq 2.5 ns	50 pF	500 Ω	open

Triple unbuffered inverter

13. Additional characteristics


14. Application information

Remark: All values given are typical values unless otherwise specified.


Triple unbuffered inverter

15. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

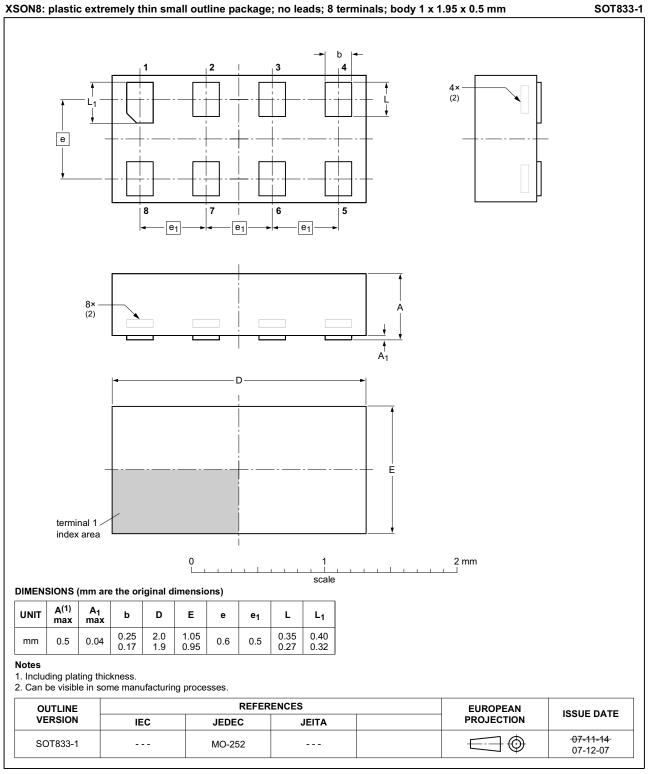
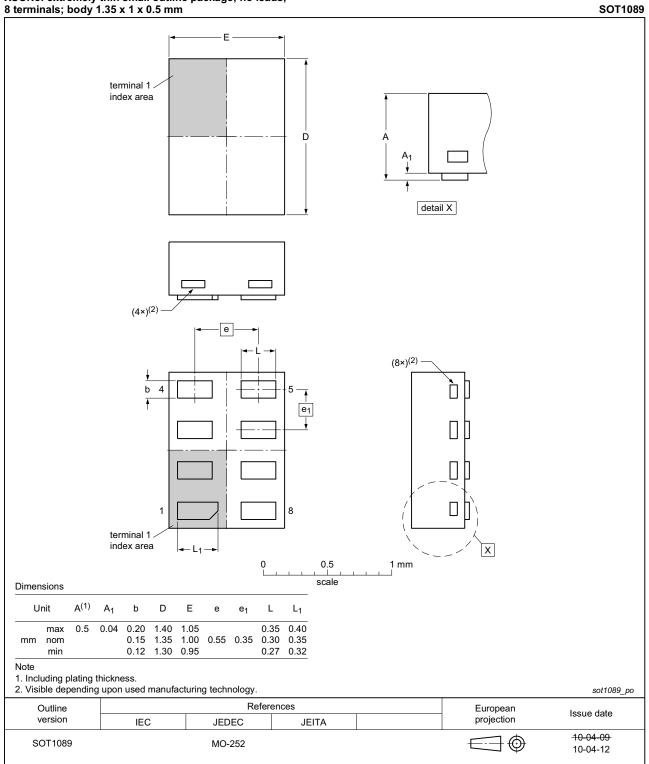
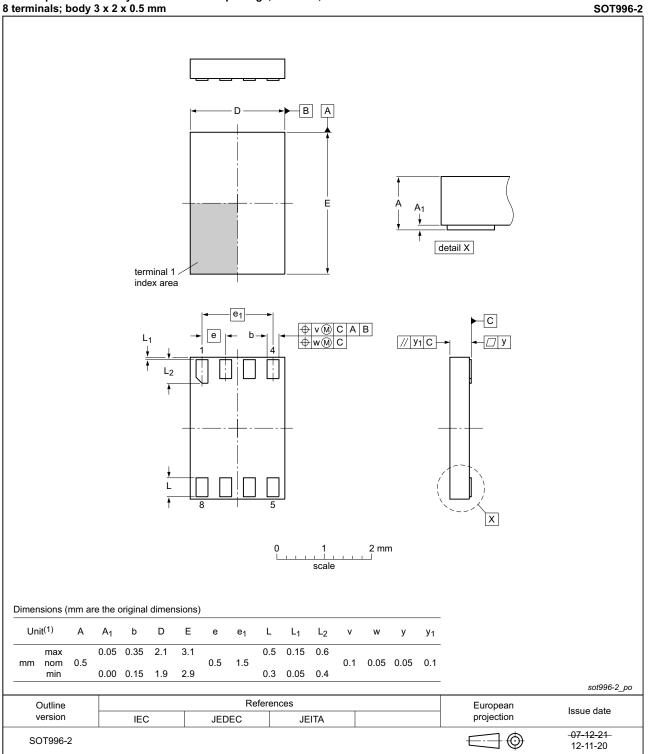

Fig 14. Package outline SOT505-2 (TSSOP8)

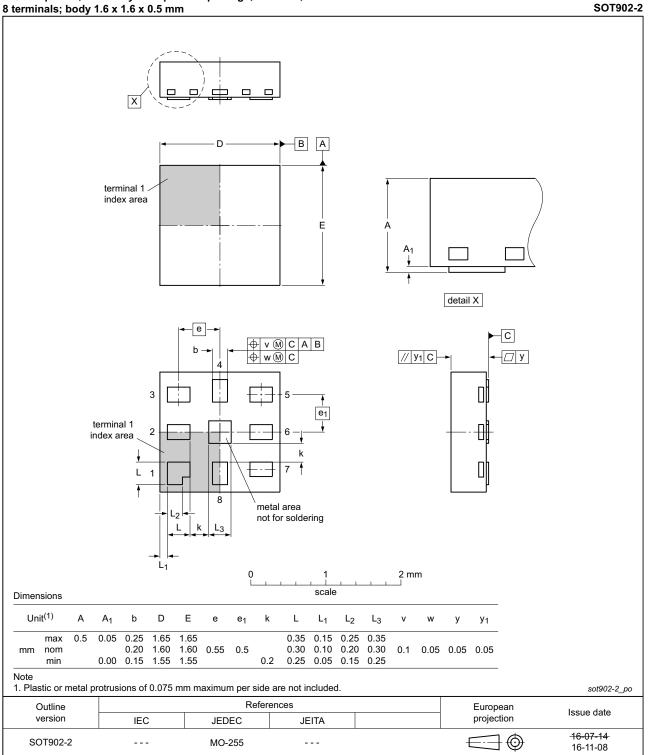
Fig 15. Package outline SOT765-1 (VSSOP8)


All information provided in this document is subject to legal disclaimers.


Fig 16. Package outline SOT833-1 (XSON8)

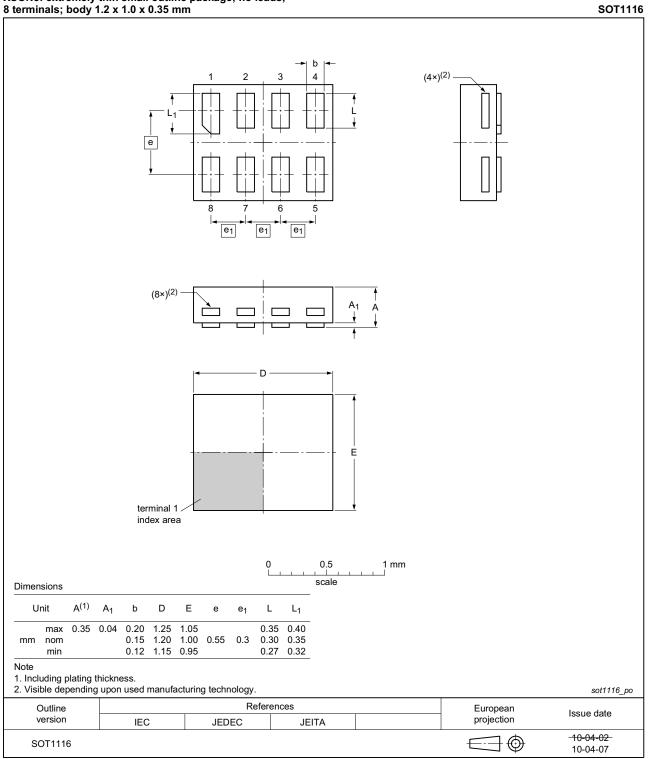
74LVC3GU04
Product data sheet

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1 x 0.5 mm


Fig 17. Package outline SOT1089 (XSON8)

XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 3 x 2 x 0.5 mm

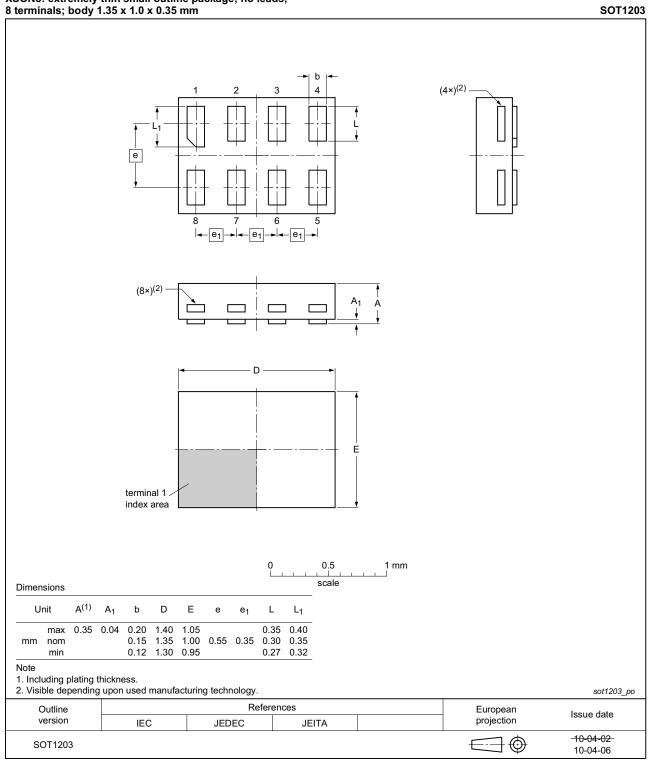
Fig 18. Package outline SOT996-2 (XSON8)


All information provided in this document is subject to legal disclaimers.

XQFN8: plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm

Fig 19. Package outline SOT902-2 (XQFN8)

All information provided in this document is subject to legal disclaimers.



XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm

Fig 20. Package outline SOT1116 (XSON8)

74LVC3GU04 **Product data sheet**

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm

Fig 21. Package outline SOT1203 (XSON8)

All information provided in this document is subject to legal disclaimers.

16. Abbreviations

Table 11. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
ММ	Machine Model	

17. Revision history

Table 12.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC3GU04 v.12	20161215	Product data sheet	-	74LVC3GU04 v.11
Modifications:	• <u>Table 7</u> : The	e maximum limits for leakag	e current and supply cu	rrent have changed.
74LVC3GU04 v.11	20130409	Product data sheet	-	74LVC3GU04 v.10
Modifications:	 For type null 	mber 74LVC3GU04GD XS0	DN8U has changed to X	SON8.
74LVC3GU04 v.10	20120706	Product data sheet	-	74LVC3GU04 v.9
Modifications:	 For type null 	mber 74LVC3GU04GM the	SOT code has changed	to SOT902-2.
74LVC3GU04 v.9	20111123	Product data sheet	-	74LVC3GU04 v.8
Modifications:	Legal pages	s updated.		1
74LVC3GU04 v.8	20101110	Product data sheet	-	74LVC3GU04 v.7
74LVC3GU04 v.7	20091111	Product data sheet	-	74LVC3GU04 v.6
74LVC3GU04 v.6	20080304	Product data sheet	-	74LVC3GU04 v.5
74LVC3GU04 v.5	20071005	Product data sheet	-	74LVC3GU04 v.4
74LVC3GU04 v.4	20070315	Product data sheet	-	74LVC3GU04 v.3
74LVC3GU04 v.3	20050201	Product data sheet	-	74LVC3GU04 v.2
74LVC3GU04 v.2	20041027	Product data sheet	-	74LVC3GU04 v.1
74LVC3GU04 v.1	20040512	Product data sheet	-	-

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Nexperia

74LVC3GU04

Triple unbuffered inverter

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: <u>http://www.nexperia.com</u>

For sales office addresses, please send an email to: salesaddresses@nexperia.com

20. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 4
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms 7
13	Additional characteristics 9
14	Application information 9
15	Package outline 10
16	Abbreviations 18
17	Revision history 18
18	Legal information 19
18.1	Data sheet status 19
18.2	Definitions 19
18.3	Disclaimers
18.4	Trademarks 20
19	Contact information 20
20	Contents 21

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-8550101CA E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG 412327H 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLV14049UBDR2G NLV14069UBDTR2G NLV17SZ14DFT2G NLVVHC1G05DFT2G 74LVC2G17FW4-7 NLU2G04CMX1TCG NLV17SZ06DFT2G NLV27WZ04DFT2G NLV74HCT14ADTR2G NLX2G14CMUTCG NLU1G04AMX1TCG SNJ54ACT14W SNJ54AC04W NCV1729SN35T1G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLV17SZ04DFT2G 74AUP2G04FW3-7 NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLV74ACT00DR2G NLV74AC14DR2G NLV37WZ14USG NLV27WZ04DFT1G NLV14106BDG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZ04P5T5G NL17SG14DFT2G 74LVC06ADTR2G 74LVC04ADR2G TC7SZ04AFS,L3J NLU1GT04AMUTCG NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NL17SG14P5T5G NLV27WZ04DFT2G LV0008G100-4EOFN