74VHCT374A
 Octal D－Type Flip－Flop with 3－STATE Outputs

Features

－High speed： $\mathrm{f}_{\mathrm{MAX}}=140 \mathrm{MHz}$（Typ．）at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
■ High noise immunity： $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
■ Power down protection is provided on all inputs and outputs
■ Low power dissipation： $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}(\mathrm{Max}). @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
■ Pin and function compatible with 74 HCT 374

General Description

The VHCT374A is an advanced high speed CMOS octal flip－flop with 3－STATE output fabricated with silicon gate CMOS technology．It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while main－ taining the CMOS low power dissipation．This 8－bit D－type flip－flop is controlled by a clock input（CP）and an output enable input（ $\overline{\mathrm{OE}}$ ）．When the $\overline{\mathrm{OE}}$ input is HIGH， the eight outputs are in a high impedance state．
Protection circuits ensure that 0 V to 7 V can be applied to the input and output ${ }^{(1)}$ pins without regard to the supply voltage．This device can be used to interface 3 V to 5 V systems and two supply systems such as battery back up．This circuit prevents device destruction due to mis－ matched supply and input voltages．

Note：

1．Outputs in OFF－State．

Ordering Information

Order Number	Package Number	Package Description
74VHCT374AM	M20B	20－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide
74VHCT374ASJ	M20D	20－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74VHCT374AMTC	MTC20	20－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Surface mount packages are also available on Tape and Reel．Specify by appending the suffix letter＂ X ＂to the ordering number．Pb－Free package per JEDEC J－STD－020B．

Connection Diagram

Pin Description

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
CP	Clock Pulse Input 3－STATE
$\overline{\mathrm{OE}}$	Output Enable Input 3－STATE
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs

Logic Symbol

IEEE/IEC

Truth Table

Inputs			Outputs
$\mathrm{D}_{\mathbf{n}}$	CP	$\overline{\mathbf{O E}}$	$\mathbf{O}_{\mathbf{n}}$
H	\widetilde{r}	L	H
L	\widetilde{r}	L	L
X	X	H	Z

Functional Description

The VHCT374A consists of eight edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial
$\mathrm{Z}=$ High Impedance
$\boldsymbol{\sim}=$ LOW-to-HIGH Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage Note 2 Note 3	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
	Input Diode Current	-0.5 V to +7.0 V
I_{K}	-20 mA	
I_{OK}	Output Diode Current ${ }^{(4)}$	$\pm 20 \mathrm{~mA}$
$\mathrm{I}_{\text {OUT }}$	DC Output Current	$\pm 25 \mathrm{~mA}$
I_{CC}	DC $\mathrm{V}_{\text {CC }} /$ GND Current	$\pm 75 \mathrm{~mA}$
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions ${ }^{(5)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	4.5 V to +5.5 V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	0 V to +5.5 V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	
	Note 2	
	Note 3	0 V to V_{CC}
	0 V to 5.5 V	
$\mathrm{~T}_{\mathrm{OPR}}$	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	Ons $/ \mathrm{V} \sim 20 \mathrm{~ns} / \mathrm{V}$

Notes:

2. HIGH or LOW state. I IOUT absolute maximum rating must be observed.
3. When outputs are in OFF-State or when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.
4. $\mathrm{V}_{\text {OUT }}<\mathrm{GND}, \mathrm{V}_{\text {OUT }}>\mathrm{V}_{\mathrm{CC}}$ (Outputs Active).
5. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
					Min.	Typ.	Max.	Min.	Max.	
V_{IH}	HIGH Level Input Voltage	4.5			2.0			2.0		V
		5.5			2.0			2.0		
VIL	LOW Level Input Voltage	4.5					0.8		0.8	V
		5.5					0.8		0.8	
V_{OH}	HIGH Level Output Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	4.40	4.50		4.40		V
				$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	3.94			3.80		
V_{OL}	LOW Level Output Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=+50 \mu \mathrm{~A}$		0.0	0.1		0.1	V
				$\mathrm{l}_{\mathrm{OL}}=+8 \mathrm{~mA}$			0.36		0.44	
I_{OZ}	3-STATE Output OFF-State Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				± 0.25		± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN }}$	Input Leakage Current	0-5.5	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND				± 0.1		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND				4.0		40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCT}}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.4 \mathrm{~V} \text {, Other } \\ & \text { Inputs }=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				1.35		1.50	mA
IOFF	Output Leakage Current (Power Down State)	0.0	$\mathrm{V}_{\text {OUT }}=5$.				0.5		5.0	$\mu \mathrm{A}$

Noise Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units
				Typ.	Limits	
$\mathrm{V}_{\text {OLP }}{ }^{(6)}$	Quiet Output Maximum Dynamic V_{OL}	5.0	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	1.2	1.6	V
$\mathrm{V}_{\text {OLV }}{ }^{(6)}$	Quiet Output Minimum Dynamic V_{OL}	5.0	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-1.2	-1.6	V
$\mathrm{V}_{\text {IHD }}{ }^{(6)}$	Minimum HIGH Level Dynamic Input Voltage	5.0	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		2.0	V
$\mathrm{V}_{\text {LL }}{ }^{(6)}$	Maximum LOW Level Dynamic Input Voltage	5.0	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		0.8	V

Note:
6. Parameter guaranteed by design.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
					Min.	Typ.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	5.0 ± 0.5		$C_{L}=15 \mathrm{pF}$		4.1	9.4	1.0	10.5	ns
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5.6	10.4	1.0	11.5	
$t_{\text {PZL }}, t_{\text {PZH }}$	3-STATE Output Enable Time	5.0 ± 0.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$C_{L}=15 \mathrm{pF}$		6.5	10.2	1.0	11.5	ns
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.3	11.2	1.0	12.5	
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	3-STATE Output Disable Time	5.0 ± 0.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.0	11.2	1.0	12.0	ns
$\mathrm{t}_{\text {OSLH }}$, $\mathrm{t}_{\text {OSHL }}$	Output to Output Skew	5.0 ± 0.5	$\begin{array}{\|l\|} \hline(7) \\ \hline \end{array}$				1.0		1.0	ns
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	5.0 ± 0.5		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	90	140		80		MHz
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	85	130		75		
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$V_{C C}=$ Open			4	10		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			9				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance		(8)			25				pF

Notes:
7. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|t_{\text {PLH max }}-t_{\text {PLH min }}\right| ; \mathrm{t}_{\mathrm{OSHL}}=\left|t_{\text {PHL max }}-t_{\text {PHL min }}\right|$
8. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:
$\mathrm{I}_{\mathrm{CC}}($ Opr. $)=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per F/F). The total C_{PD} when n pcs. of the octal D Flip-Flop operates can be calculated by the equation: $\mathrm{C}_{\text {PD }}($ total $)=20+12 \mathrm{~m}$

AC Operating Requirements

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H}), \mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Minimum Pulse Width (CP)	5.0 ± 0.5	6.5			8.5		ns
t_{s}	Minimum Set-up Time	5.0 ± 0.5	2.5			2.5		ns
t_{H}	Minimum Hold Time	5.0 ± 0.5	2.5			2.5		ns

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIAJ EDR-7320 REGISTRATION,

ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M20DREVC

Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

A. CONFORMS TO JEDEC REGISTRATION
REF NOTE G, DATE $7 / 93$.
B. DIMENSIONS ARE IN MILLIMETERS.
c. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE GAR EXTRUSIONS.

DETAIL A
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC20REVD1

Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	HiSeCtm	Power-SPM ${ }^{\text {™ }}$	TinyBuck ${ }^{\text {TM }}$
Across the board. Around the world. ${ }^{\text {TM }}$	$i-$ Lot $^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	TinyLogic ${ }^{\text {® }}$
ActiveArray ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	Programmable Active Droop ${ }^{\text {TM }}$	TINYOPTOTM
Bottomless ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyPower ${ }^{\text {TM }}$
Build it Now ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {m }}$	QT Optoelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
CorePLUS ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {TM }}$	RapidConnect ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {™ }}$	ScalarPump ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
DOMETM	MSXProtm	SMART START ${ }^{\text {TM }}$	Wire ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	OCX ${ }^{\text {™ }}$	SPM ${ }^{\text {® }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProtm	STEALTH ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperFETM	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-3	
FACT ${ }^{\text {® }}$	PACMAN ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
FAST ${ }^{\text {® }}$	PDP-SPM ${ }^{\text {™ }}$	SuperSOTTM-8	
FASTr ${ }^{\text {m }}$	POP'M	SyncFET ${ }^{\text {TM }}$	
FPS ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM ${ }^{\text {™ }}$	
FRFET ${ }^{\text {® }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GTO'm	PowerSaver ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
 FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

