FAIRCHILD
SEMICONDUCTロR®

ZTX749

PNP Low Saturation Transistor

- This device are designed with high current gain and low saturation voltage with collector currents up to 2A continuous.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	-25	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector-Base Voltage	-35	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	-5	V
I_{C}	Collector Current \quad - Continuous	-2	A
$\mathrm{~T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1. These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$
2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Characteristics					
$\mathrm{BV}_{\text {CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	-25		V
$\mathrm{BV}_{\text {CBO }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	-35		V
$\mathrm{BV}_{\text {EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}$	-5		V
$\mathrm{I}_{\text {CBO }}$	Collector Cutoff Current	$\begin{aligned} & \mathrm{V}_{C B}=-30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=-30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \hline-100 \\ -10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {EBO }}$	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=-4 \mathrm{~V}$		-100	nA
On Characteristics*					
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-6 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 70 \\ 100 \\ 75 \\ 15 \\ \hline \end{gathered}$	300	
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-200 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} \hline-300 \\ -500 \\ \hline \end{array}$	mV
V_{BE} (sat)	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA}$		-1.25	V
$\mathrm{V}_{\text {BE }}$ (on)	Base-Emitter On Voltage	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V}$		-1	V
Small-Signal Characteristics					
$\mathrm{C}_{\text {obo }}$	Output Capacitance	$\mathrm{V}_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$		100	PF
f_{T}	Transition Frequency	$\begin{aligned} & I_{\mathrm{C}}=1-00 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	100		

Thermal Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Max.	Units
P_{D}	Total Device Dissipation	1	W
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Dimensions

TO-226

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \overline{\mathrm{Z}} & 99 & 95 \\
\hline 1 & \mathrm{E} & \mathrm{E} \\
\hline 2 & \mathrm{~B} & \mathrm{C} \\
\hline 3 & \mathrm{C} & \mathrm{~B} \\
\hline
\end{array} \\
& \text { TO-226AE }(95,99)
\end{aligned}
$$

For leadformed option ordering, refer to Tape \& Reel data information.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FACT ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	SPM ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {TM }}$	FACT Quiet Series ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	POP ${ }^{\text {™ }}$	Stealth ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	$\mathrm{FAST}^{\text {® }}$	LittleFET ${ }^{\text {™ }}$	Power247 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3
CoolFET ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	MicroFET ${ }^{\text {™ }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6
CROSSVOLT ${ }^{\text {TM }}$	FRFETM	MicroPak ${ }^{\text {TM }}$	QFET ${ }^{\circledR}$	SuperSOTTM-8
DOME ${ }^{\text {M }}$	GlobalOptoisolator ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {Tm }}$	GTO ${ }^{\text {¹ }}$	MSX ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	$\mathrm{HiSeC}^{\text {m }}$	MSXPro ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
EnSigna ${ }^{\text {™ }}$	$\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$	OCX9	RapidConfigure ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
Across the board	Around the world. ${ }^{\text {TM }}$	OCXProm	RapidConnect ${ }^{\text {TM }}$	UltraFET ${ }^{\text {® }}$
The Power Franc	ise ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\circledR}$	SILENT SWITCHER ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
Programmable A	tive Droop ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {TM }}$	SMART START ${ }^{\text {™ }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for on semiconductor manufacturer:
Other Similar products are found below :
FGH40T70SHD-F155 MMBTA42 FDD8424H_F085A LM258AMX LV8760T-MPB-E BAT42XV2 007851X 702607H MC33079DG MC34151P MC78L08ACDG FAN3111ESX FDMA3028N FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MMBZ5233B FPAB30BH60B FSBB20CH60C 1.5KE16AG EMI4193MTTAG MT9V115EBKSTCH-GEVB NB7L1008MNGEVB NC7WZ126K8X NCN9252MUGEVB NCP1075PSRGEVB HMHA2801AV BZX84C3V9LT1G 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU KAI-0340-AAA-CF-AA-DUAL 2SC5569-TD-E LM324M FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK AR0230CSSC00SUEAD3-GEVK AR0331SRSC00XUEAH-GEVB QEE123 LV8549MGEVB LV8714TAGEVK RFD3055LESM9A MC14016BDR2G MC14043BCP

