ZXTP25100BFH
 100V, SOT23, PNP medium power transistor

Summary

$\mathrm{BV}_{\text {(BR) CEX }}>-140 \mathrm{~V}, \mathrm{BV}_{\text {(BR)CEO }}>-100 \mathrm{~V}$
$B V_{\text {(BR)ECX }}>-7 V$;
$I_{C(\text { cont })}=-2 \mathrm{~A}$
$\mathrm{V}_{\mathrm{CE}(\text { sat })}<-130 \mathrm{mV}$ @ -1A

$R_{\text {CE(sat) }}=108 \mathrm{~m} \Omega$ typical
$\mathrm{P}_{\mathrm{D}}=1.25 \mathrm{~W}$

Complementary part number ZXTN25100BFH

Description

Advanced process capability and package design have been used to maximize the power handling and performance of this small outline transistor. The compact size and ratings of this device make it ideally suited to applications where space is at a premium.

Features

- High power dissipation SOT23 package

- High peak current
- Low saturation voltage
- 140 V forward blocking voltaget
- 7V reverse blocking voltage

Applications

- MOSFET and IGBT gate driving
- DC - DC converters

Pinout - top view

- Motor drive
- Relay, lamp, and solenoid drive

Ordering information

Device	Reel size (inches)	Tape width	Quantity per reel
ZXTP25100BFHTA	7	8 mm	3,000

Device marking

056

ZXTP25100BFH

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	$\mathrm{V}_{\text {CBO }}$	-140	V
Collector-emitter voltage (forward blocking)	$V_{\text {CEX }}$	-140	V
Collector-emitter voltage	$\mathrm{V}_{\text {CEO }}$	-100	V
Emitter-collector voltage (reverse blocking)	$\mathrm{V}_{\text {ECX }}$	-7	V
Emitter-base voltage	$V_{\text {EBO }}$	-7	V
Continuous collector current ${ }^{\text {(b) }}$	I_{C}	-2	A
Peak pulse current	$\mathrm{I}_{\text {CM }}$	-5	A
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (a) Linear derating factor	P_{D}	$\begin{aligned} & 0.73 \\ & 5.84 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (b) Linear derating factor	P_{D}	$\begin{gathered} 1.05 \\ 8.4 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (c) Linear derating factor	P_{D}	$\begin{gathered} 1.25 \\ 9.6 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (d) Linear derating factor	P_{D}	$\begin{aligned} & 1.81 \\ & 14.5 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ${ }^{\text {(a) }}$	$\mathrm{R}_{\text {ӨJA }}$	171	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient ${ }^{\text {(b) }}$	$\mathrm{R}_{\text {ӨJA }}$	119	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{\text {(c) }}$	$\mathrm{R}_{\text {ӨJA }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient ${ }^{\text {(d) }}$	$\mathrm{R}_{\text {ӨJA }}$	69	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided 10 z copper, in still air conditions.
(b) Mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(c) Mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(d) As (c) above measured at $\mathrm{t}<5$ secs.

ZXTP25100BFH

Characteristics

Transient Thermal Impedance

ZXTP25100BFH

Electrical characteristics (at $\mathrm{T}_{\mathrm{AMB}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Collector-base breakdown voltage	$\mathrm{BV}_{\mathrm{CBO}}$	-140	-165		V	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$
Collector-emitter breakdown voltage (forward blocking)	$\mathrm{BV}_{\mathrm{CEX}}$	-140	-165		V	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$, $\mathrm{R}_{\mathrm{BE}}<1 \mathrm{k} \Omega$ or -0.25 V
Collector-emitter breakdown voltage (base open)	$\mathrm{BV}_{\mathrm{CEO}}$	-100	-125		V	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}^{\left({ }^{*}\right)}$

NOTES:

(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.

ZXTP25100BFH

Typical characteristics

ZXTP25100BFH

Package outline - SOT23

Dim.	Millimeters		Inches		Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Max.	Max.
A	2.67	3.05	0.105	0.120	H	0.33	0.51	0.013	0.020
B	1.20	1.40	0.047	0.055	K	0.01	0.10	0.0004	0.004
C	-	1.10	-	0.043	L	2.10	2.50	0.083	0.0985
D	0.37	0.53	0.015	0.021	M	0.45	0.64	0.018	0.025
F	0.085	0.15	0.0034	0.0059	N	0.95 NOM		0.0375 NOM	
G	1.90 NOM		0.075 NOM		-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 894549490	Telephone: (1) 6313602222	Telephone: (852) 26100611	Telephone: (44) 1616224444
Fax: (49) 8945494949 europe.sales@zetex.com	Fax: (1) 6313608222 usa.sales@zetex.com	Fax: (852) 24250494 asia.sales@zetex.com	Fax: (44) 1616224446 hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for diodes incorporated manufacturer:
Other Similar products are found below :
1.5KE62A-T MMSZ5232BQ-13-F DMN2065UW-7 AH3782-SA-7 AP7365-39WG-7 6A10-T AZ1117EH-5.0TRG1 AZV3002S-13

BAV116WSQ-7 BCP5510TA BZT52C10-7-F BZT52C18-7-F PAM2863EV1 SBRT25U60SLP-13 LM2904AQM8-13 GBPC1506
BAS116-7-F BAT40V-7 BAV20WS-7-F BAV23A-7-F BCR401UW6-7 DMP4013LFG-7 DMTH6009LK3Q-13 SB560-T APX809-26SAG-
7 AL8807EV3 B350A-13-F B560C-13-F AZV832MMTR-G1 BAS70-05-7-F BAV23S-7-F BC847BW-7-F BC847CT-7-F BC847CW-7-F
BC848C-7-F BC848CW-7-F BC858B-7-F BC858C-7-F BCP52TA BCX53TA BCX56TA B550C-13-F BAV20W-7-F BC847A-7-F
BC847PN-7-F 6A6-T BC857BT-7-F BS170FTA BCP5216TA BCP5310TA

