ZXMP6A18K
 60V P-channel enhancement mode MOSFET

Summary

$V_{(B R) D S S}=-60 V$: $R_{D S(\text { on })}=0.055: I_{D}=-10.4 A$

Description

This new generation of trench MOSFETs from Zetex utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

Features

- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- DPAK package

Applications

- Motor drive
- Disconnect switches

Ordering information

Device	Reel size (inches)	Tape width	Quantity per reel
ZXMP6A18KTC	13	16 mm	2500 units

Device marking

ZXMP
6A18

ZXMP6A18K

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Drain-source voltage	$\mathrm{V}_{\text {DSS }}$	-60	V
Gate-source voltage	V_{GS}	± 20	V
Continuous drain current $@ V_{G S}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (b) $@ V_{G S}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ (b) $@ V_{G S}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(\mathrm{a})}$	$I_{\text {D }}$	$\begin{gathered} -10.4 \\ -8.3 \\ -6.8 \end{gathered}$	A A A
Pulsed drain current ${ }^{(c)}$	I_{DM}	-37.5	A
Continuous source current (body diode) ${ }^{\text {(b) }}$	I_{S}	-11.5	A
Pulsed source current (body diode) ${ }^{(c)}$	$I_{\text {SM }}$	-37.5	A
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (a) Linear derating factor	P_{D}	$\begin{gathered} 4.3 \\ 34.4 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (b) Linear derating factor	P_{D}	$\begin{aligned} & 10.1 \\ & 80.8 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (d) Linear derating factor	P_{D}	$\begin{aligned} & 2.15 \\ & 17.2 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}: \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Value	Unit
Junction to ambient ${ }^{\text {(a) }}$	$\mathrm{R}_{\text {ӨJA }}$	29	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{\text {(b) }}$	${ }^{\text {(d) }}$	$\mathrm{R}_{\text {ӨJA }}$	12.3
Junction to ambient $^{(d)}$	$\mathrm{R}_{\text {ӨJA }}$	58	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $20 z$ copper, in still air conditions.
(b) For a device surface mounted on FR4 PCB measured at $t 10$ sec.
(c) Repetitive rating $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB, $\mathrm{D}=0.02$ pulse width=300 s - pulse width limited by maximum junction temperature.
(d) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $10 z$ copper, in still air conditions.

ZXMP6A18K

Characteristics

ZXMP6A18K

Electrical characteristics (at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Static						
Drain-source breakdown voltage	$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	-60			V	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Zero gate voltage drain current	$\mathrm{I}_{\text {DSS }}$			-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=-60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate-body leakage	$\mathrm{I}_{\mathrm{GSS}}$			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
Gate-source threshold voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	-1.0			V	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
Static drain-source on-state resistance (*)	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$			$\begin{aligned} & 0.055 \\ & 0.080 \end{aligned}$	Ω	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.9 \mathrm{~A} \end{aligned}$
Forward transconductance ${ }^{(*)(\ddagger)}$	gfs		8.7		S	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{~A}$
Dynamic ${ }^{(\ddagger)}$						
Input capacitance	$\mathrm{C}_{\text {iss }}$		1580		pF	$\begin{aligned} & V_{D S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output capacitance	Coss		160		pF	
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$		140		pF	
Switching ${ }^{(\dagger)}$ (\ddagger)						
Turn-on delay time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$		4.6		ns	$\begin{aligned} & V_{D D}=-30 V, I_{D}=-1 A \\ & R_{G}=6.0 W, V_{G S}=-10 V \end{aligned}$
Rise time	t_{r}		5.8		ns	
Turn-off delay time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		55		ns	
Fall time	t_{f}		23		ns	
Gate charge	Q_{g}		23		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{~A} \end{aligned}$
Total gate charge	O_{g}		44		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-30 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=-3.5 \mathrm{~A} \end{aligned}$
Gate-source charge	Q_{gs}		3.9		nC	
Gate-drain charge	Q_{gd}		9.8		nC	
Source-drain diode						
Diode forward voltage ${ }^{(*)}$	$\mathrm{V}_{\text {SD }}$		-0.85	-0.95	V	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=-4.2 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$
Reverse recovery time ${ }^{(\ddagger)}$	t_{rr}		37		ns	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=-2.1 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
Reverse recovery charge ${ }^{(\ddagger)}$	$\mathrm{o}_{\text {rr }}$		56		nC	

NOTES:
(*) Measured under pulsed conditions. Width $\leq 300 \mu$ s. Duty cycle $\leq 2 \%$.
(\dagger) Switching characteristics are independent of operating junction temperature.
(\ddagger) For design aid only, not subject to production testing.

ZXMP6A18K

Typical characteristics

ZXMP6A18K

Typical Characteristics

Basic gate charge waveform

Switching time waveforms

Gate-Source Voltage v Gate Charge

Gate charge test circuit

Switching time test circuit

ZXMP6A18K

Intentionally left blank

ZXMP6A18K

Package outline - DPAK

SEE VIEW C

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
	Min	Max	Min	Max		Min	Max	Min	Max
A	0.086	0.094	2.18	2.39	e	0.090 BSC		2.29 BSC	
A1	-	0.005	-	0.127	H	0.370	0.410	9.40	10.41
b	0.020	0.035	0.508	0.89	L	0.055	0.070	1.40	1.78
b2	0.030	0.045	0.762	1.14	L1	0.108 REF		2.74 REF	
b3	0.205	0.215	5.21	5.46	L2	0.020 BSC		0.508 BSC	
c	0.018	0.024	0.457	0.61	L3	0.035	0.065	0.89	1.65
c2	0.018	0.023	0.457	0.584	L4	0.025	0.040	0.635	1.016
D	0.213	0.245	5.41	6.22	L5	0.045	0.060	1.14	1.52
D1	0.205	-	5.21	-	$\theta 1^{\circ}$	0°	10°	0°	10°
E	0.250	0.265	6.35	6.73	Θ°	0°	15°	0°	15°
E1	0.170	-	4.32	-	-	-	-	-	-

Note: Controlling dimensions are in inches. Approximate dimensions are provided in millimeters

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong Germany	OSA

For international sales offices visit www.zetex.com/offices
Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for diodes incorporated manufacturer:
Other Similar products are found below :
1.5KE62A-T MMSZ5232BQ-13-F DMN2065UW-7 AH3782-SA-7 AP7365-39WG-7 6A10-T AZ1117EH-5.0TRG1 AZV3002S-13

BAV116WSQ-7 BCP5510TA BZT52C10-7-F BZT52C18-7-F PAM2863EV1 SBRT25U60SLP-13 LM2904AQM8-13 GBPC1506
BAS116-7-F BAT40V-7 BAV20WS-7-F BAV23A-7-F BCR401UW6-7 DMP4013LFG-7 DMTH6009LK3Q-13 SB560-T APX809-26SAG-
7 AL8807EV3 B350A-13-F B560C-13-F AZV832MMTR-G1 BAS70-05-7-F BAV23S-7-F BC847BW-7-F BC847CT-7-F BC847CW-7-F
BC848C-7-F BC848CW-7-F BC858B-7-F BC858C-7-F BCP52TA BCX53TA BCX56TA B550C-13-F BAV20W-7-F BC847A-7-F
BC847PN-7-F 6A6-T BC857BT-7-F BS170FTA BCP5216TA BCP5310TA

