SUMMARY

$V_{(B R) D S S}=60 V ; R_{D S(O N)}=0.14 \Omega \quad I_{D}=3.8 A$

DESCRIPTION

This new generation of TRENCH MOSFETs from Zetex utilises a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

FEATURES

- Low on-resistance

- Fast switching speed
- Low threshold
- Low gate drive
- SOT223 package

APPLICATIONS

- DC - DC converters
- Power management functions
- Relay and solenoid driving
- Motor control

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXMN6A11GTA	$7^{\prime \prime}$	12 mm	1000 units
ZXMN6A11GTC	$13^{\prime \prime}$	12 mm	4000 units

DEVICE MARKING

- ZXMN

6A11

TOP VIEW

ZXMN6A11G

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNT
Drain-Source Voltage	$\mathrm{V}_{\text {DS }}$	60	V
Gate-Source Voltage	V_{GS}	± 20	V
	${ }^{\text {d }}$	$\begin{aligned} & 3.8 \\ & 3.0 \\ & 2.7 \end{aligned}$	A
Pulsed Drain Current ${ }^{(c)}$	I_{DM}	10	A
Continuous Source Current (Body Diode) ${ }^{\text {(b) }}$	$\mathrm{I}_{\text {S }}$	5	A
Pulsed Source Current (Body Diode) ${ }^{(\mathrm{c})}$	$\mathrm{I}_{\text {SM }}$	10	A
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (a) Linear Derating Factor	P_{D}	$\begin{aligned} & 2.0 \\ & 16 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}{ }^{\text {(b) }}$ Linear Derating Factor	P_{D}	$\begin{aligned} & 3.9 \\ & 31 \end{aligned}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}: \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
J unction to Ambient $^{\text {(a) }}$	${ }^{\text {(b) }}$	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5
J unction to Ambient $^{\text {(}}{ }^{\circ}$	$\mathrm{R}_{\theta \mathrm{J} A}$	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$

notes

(a) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ FR4 PCB with high coverage of single sided loz copper, in still air conditions.
(b) For a device surface mounted on FR4 PCB measured at $\mathrm{t} \leqslant 5$ secs.
(c) Repetitive rating $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ FRA $P C B, D=0.05$ pulse width $=10 \mu \mathrm{~s}$ - pulse width limited by maximum junction temperature.

SEMICONDUCTORS

ZXMN6A11G

CHARACTERISTICS

ZXMN6A11G

ELECTRICAL CHARACTERISTICS (at TA $=25^{\circ} \mathrm{C}$ unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNTT	CONDITIONS.
STATIC						
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	60			V	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {DSS }}$			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate-Body Leakage	IGSS			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0			V	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
Static Drain-Source On-State Resistance ${ }^{(1)}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$			$\begin{aligned} & 0.140 \\ & 0.250 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.4 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A} \end{aligned}$
Forward Transconductance ${ }^{(3)}$	g_{fs}		4.9		S	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$
DYNAMIC ${ }^{(3)}$						
Input Capacitance	$\mathrm{C}_{\text {iss }}$		330		pF	$\begin{aligned} & V_{D S}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output Capacitance	$\mathrm{C}_{\text {oss }}$		35.2		pF	
Reverse Transfer Capacitance	Crss		17.1		pF	
SWITCHING ${ }^{(2)(3)}$						
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\text { on) }}$		1.95		ns	$\begin{aligned} & V_{D D}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=6.0 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (refer to test circuit) } \end{aligned}$
Rise Time	t_{r}		3.5		ns	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		8.2		ns	
Fall Time	t_{f}		4.6		ns	
Gate Charge	Q_{g}		3.0		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \end{aligned}$
Total Gate Charge	Q_{g}		5.7		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=2.5 \mathrm{~A} \\ & \text { (refer to test circuit) } \end{aligned}$
Gate-Source Charge	Q_{gs}		1.25		nC	
Gate-Drain Charge	Q_{gd}		0.86		nC	
SOURCE-DRAIN DIODE						
Diode Forward Voltage ${ }^{(1)}$	$\mathrm{V}_{\text {SD }}$		0.85	0.95	V	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=2.8 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$
Reverse Recovery Time ${ }^{(3)}$	t_{rr}		21.5		ns	$\begin{aligned} & \mathrm{T}_{1}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=2.5 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
Reverse Recovery Charge ${ }^{(3)}$	$\mathrm{Q}_{\text {rr }}$		20.5		nC	

NOTES
(1) Measured under pulsed conditions. Width $\leq 300 \mu \mathrm{~s}$. Duty cycle $\leq 2 \%$.
(2) Switching characteristics are independent of operating junction temperature.
(3) For design aid only, not subject to production testing.

ZXMN6A11G

TYPICAL CHARACTERISTICS

ISSUE 3 - NOVEMBER 2004

ZXMN6A11G

TYPICAL CHARACTERISTICS

PACKAGE OUTLINE

PAD LAYOUT DETAILS

PACKAGE DIMENSIONS

DIM	MILLIMETERS		DIM	MILLIMETERS	
	MIN	MAX		MIN	MAX
A	-	1.80	D	6.30	6.70
A1	0.02	0.10	e	2.30	
BASIC					
A2	1.55	1.65	e1	4.60	
BASIC					
b	0.66	0.84	E	6.70	7.30
b2	2.90	3.10	E1	3.30	3.70
C	0.23	0.33	L	0.90	-

© Zetex Semiconductors plc 2004

Europe	Americas	Asia Pacific	Corporate Headquarters
			Zetex GmbH

These offices are supported by agents and distributors in major countries world-wide.
This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

SEMICONDUCTORS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for diodes incorporated manufacturer:
Other Similar products are found below :
1.5KE62A-T MMSZ5232BQ-13-F DMN2065UW-7 AH3782-SA-7 AP7365-39WG-7 6A10-T AZ1117EH-5.0TRG1 AZV3002S-13

BAV116WSQ-7 BCP5510TA BZT52C10-7-F BZT52C18-7-F PAM2863EV1 SBRT25U60SLP-13 LM2904AQM8-13 GBPC1506
BAS116-7-F BAT40V-7 BAV20WS-7-F BAV23A-7-F BCR401UW6-7 DMP4013LFG-7 DMTH6009LK3Q-13 SB560-T APX809-26SAG-
7 AL8807EV3 B350A-13-F B560C-13-F AZV832MMTR-G1 BAS70-05-7-F BAV23S-7-F BC847BW-7-F BC847CT-7-F BC847CW-7-F
BC848C-7-F BC848CW-7-F BC858B-7-F BC858C-7-F BCP52TA BCX53TA BCX56TA B550C-13-F BAV20W-7-F BC847A-7-F
BC847PN-7-F 6A6-T BC857BT-7-F BS170FTA BCP5216TA BCP5310TA

