

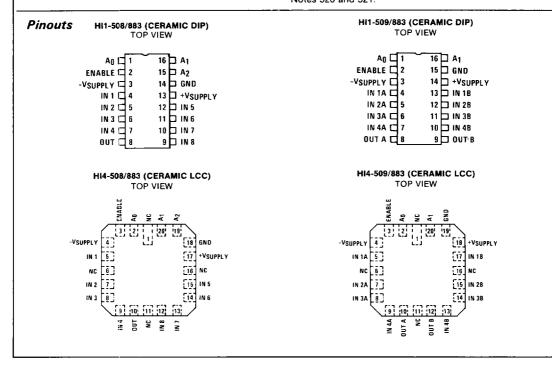
HI-508/883 HI-509/883

Single 8/Differential 4 Channel CMOS Analog Multiplexer

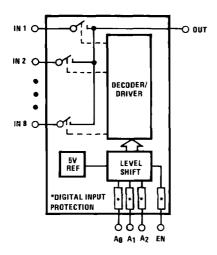
January 1989

Features

- This Circuit is Processed in Accordance to Mil-Std-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- TTL/CMOS Compatible......2.4V (Logic "1")
- Access Time (Max.)......1000ns
- 44V Maximum Power Supply
- Break-Before-Make Switching
- No Latch-up
- Replaces DG508A/DG508AA and DG509A/DG509AA


Applications

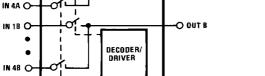
- Data Acquisition Systems
- Precision Instrumentation
- Demultiplexing
- Selector Switch


Description

These monolithic CMOS multiplexers each include an array of eight analog switches, a digital decode circuit for channel selection, a voltage reference for logic thresholds, and an ENABLE input for device selection when several multiplexers are present.

The Dielectric Isolation (DI) process used in fabrication of these devices eliminates the problem of latch-up. Also, DI offers much lower substrate leakage and parasitic capacitance than conventional junction-isolated CMOS. Switches are guaranteed to break-before-make, so that two channels are never shorted together. The switching threshold for each digital input is established by an internal +5V reference, providing a guaranteed minimum 2.4V for logic "1" and Maximum 0.8V for logic "0". This allows direct interface without pull-up resistors to signals from most logic families: CMOS, TTL, DTL and some PMOS. For protection against transient overvoltage, the digital inputs include a series 200Ω resistor and a diode clamp to each supply. The HI-508/883 is an eight channel singleended multiplexer, and the HI-509/883 is a four channel differential version. If input overvoltage protection is needed, the HI-548/883 and HI-549/883 multiplexers are recommended. For further information, see Application Notes 520 and 521.

Functional Diagrams



HI-508/883

HI-508/883

A ₂	A ₁	A ₀	EN	"ON" CHANNEL
х	х	х	L	NONE
L	L	L	н	1
L	Ł	н	н	2
L	н	L	Н	3
L	Н	н	н	4
Н	L	L	Н	5
Н	L	н	Н	6
н	Н	L	н	7
Н	н	н	н	8

LEVEL SHIFT

δ

A TUO O

HI-509/883

Ag A1

5V REF

*DIGITAL INPUT PROTECTION

HI-509/883

A ₁	Ao	EN	"ON" CHANNEL PAIR
Х	х	L	NONE
L	L	н	1
L	Н	н	2
н	L	н	3
Н	Н	н	4

Specifications HI-508/883 HI-509/883

Voltage Between Supply Pins44V	Junction Temperature+1750(
+VSUPPLY to Ground22V	Thermal Resistance, Junction-to-Case (θjc)				
-VSUPPLY to Ground22V	Ceramic DIP Package				
Analog Input Voltage	Ceramic LCC Package20°C/V				
+Vs+Vsupply +2V	Thermal Resistance, Junction-to-Ambient (θja)				
-V _S V _{SUPPLY} -2V	Ceramic DIP Package				
Digital Input Voltage	Ceramic LCC Package810				
+VEN, +VA+VSUPPLY +4V	Power Dissipation (at 75°C)				
-VEN, -VAVSUPPLY -4V	Ceramic DIP Package				
or 20mA, whichever occurs first.	Ceramic LCC Package				
Continuous Current, S or D20mA	Power Dissipation Derating Factor (Above +75°C)				
Peak Current, S or D	Ceramic DIP Package				
(Pulsed at 1ms, 10% Duty Cycle Max.)40mA	Ceramic LCC Package				
Storage Temperature Range65°C to +150°C	ESD Classification				
Lead Temperature (Soldering 10 Seconds)275°C					
Recommended Operating Conditions					
Operating Temperature Range55°C to +125°C	Logic Low Level (VAL)				
Operating Supply Voltage (±VSUPPLY) ±15V	Logic High Level (VAH)2.4V to +VSUPPLY				
Analog Input Voltage (Vs)±Vsupply	Max RMS Current, S or D8mA				

TABLE 1. D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Devices Tested at $+V_{SUPPLY} = +15V$, $-V_{SUPPLY} = -15V$, $V_{EN} = 2.4V$, Unless Otherwise Specified.

			GROUP A		LIMITS		
D.C. PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Leakage Current	Iн	Measure Inputs Sequentially,	1, 2, 3	+25°C, +125°C	-1.0	1, 0	μΑ
,		Connect All Unused Inputs to GND		-55°C			•
	ЦL	1	1, 2, 3	+25°C, +125°C	-1.0	1, 0	μA
				-55°C			
Leakage Current Into	*IS(OFF)	V _S = +10V, V _D = -10V, V _{EN} = 0.8V	1	+25°C	-10	+10	nA
the Source Terminal of		All Unused Inputs = -10V	2, 3	+125°C, -55°C	-50	+50	nA
an"OFF" Switch	-IS(OFF)	V _S = -10V, V _D = +10V, V _{EN} = 0.8V	1	+25°C	-10	+10	nA
		All Unused Inputs = +10V	2, 3	+125°C, -55°C	-50	+50	nA
Leakage Current Into	* D(OFF)	V _D = +10V, V _{EN} = 0.8V	1	+25°C	-10	+10	nΑ
the Drain Terminal of		All Unused Inputs = -10V Hi-508/883	2, 3	+125°C, -55°C	-200	+200	пA
an "OFF" Switch		HI-509/883	2, 3	+125°C, -55°C	-100	+100	nA
	-ID(OFF)	V _D = -10V, V _{EN} = 0.8V	1	+25°C	-10	+10	пA
	, ,	All Unused Inputs = +10V HI-508/883	2, 3	+125°C, -55°C	-200	+200	nA
		HI-509/883	2, 3	+125°C, -55°C	-100	+100	nA
Leakage Current From	+ID(ON)	V _S = V _D = +10V	1	+25°C	-10	+10	nA
an "ON" Driver Into the Switch (Drain)	- (,	All Unused Inputs = -10V HI-508/883	2, 3	+125°C, -55°C	-200	+200	nA
		HI-509/883	2, 3	+125°C, -55°C	-100	+100	nA
	-1D(ON)	V _S = V _D = -10V	1	+25°C	-10	+10	nA
	_ , _ ,	All Unused Inputs = +10V HI-508/883	2, 3	+125°C, -55°C	-200	+200	nA
		Hi-509/883		+125°C, -55°C	-100	+100	nA
Positive Supply	I(+)	VA = 0V, VEN = 2.4V	1, 2, 3	+25°C, +125°C,		2.4	mA
Current				-55°C			1
Negative Supply	1(-)	V _A = 0V, V _{EN} = 2.4V	1, 2, 3	+25°C, +125°C,	-1.0		mA
Current				-55°C			
Standby Positive	+ISBY	VA = 0V, VFN = 0V	1, 2, 3	+25°C, +125°C,		2.4	mA
Supply Current	051		' ' ' '	-55°C			
Standby Negative	-ISBY	VA = 0V, VFN = 0V	1, 2, 3	+25°C, +125°C.	-1.0		mA
Supply Current	351	A		-55°C			
Switch "ON"	+R _{DS1}	V _S = 10V	1	+25°C	· · · ·	300	Ω
Resistance		ID = 1mA	2, 3	+125°C, -55°C		400	Ω
	-R _{DS1}	V _S = -10V	1	+25°C		300	Ω
		ID = -1mA	2, 3	+125°C, -55°C		400	n
Logic Level Voltage	V _{AL}	Note1	1, 2, 3	+25°C, +125°C,		0.8	V
_	VAH	Note 1	1, 2, 3	-55°C	2.4	1	V

CAUTION: These devices are sensitive to electrostatic discharge. Proper IC handling procedures should be followed.

HI-508/883 HI-509/883

TABLE 2. A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Devices Tested at +VSUPPLY = +15V, -VSUPPLY = -15V, VEN = 2.4V, Unless Otherwise Specified.

					LIMITS		
A.C. PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMP	MIN	MAX	UNITS
Break-Before-Make Time Delay	†D	R _L = 200Ω, C _L = 12.5pF	9	+25°C	25		ns
Propagation Delay Times:	t _A	AL = 10MΩ, CL = 14pF	9	+25°C		500	ns
Address Inputs to I/O Channel Times			10, 11	+125°C, -55°C		1000	ns
Enable to I/O	tON(EN)	R _L = 200Ω, C _L = 12.5pF	9	+25°C		500	ns
			10, 11	+125°C, -55°C		1000	ns
! !	^t OFF(EN)	R _L = 200Ω, C _L = 12.5pF	9	+25°C		500	ns
			10, 11	+125°C, -55°C		1000	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Characterized at +VSUPPLY = +15V, -VSUPPLY = -15V, VEN = 2.4V, Unless Otherwise Specified.

	SYMBOL		NOTE	ТЕМР	LIMITS		
PARAMETER		CONDITIONS			MIN	MAX	UNITS
Capacitance: Address Input	CA	V+ = V- = 0V f = 1MHz	2	+25°C		10	pF
Capacitance: Output Switch	cos	V+ = V- = 0V HI-508/883	2	+25°C		45	pF
		f = 1MHz HI-509/883	2	+25°C		25	pF
Capacitance Input Switch	C _{IS}	V+ = V- = 0V f = 1MHz	2	+25°C		12	pF
Charge Transfer Error	VCTE	V _S = GND V _{GEN} = 0V to 5V	2	+25°C		10	mV
Off Channel Isolation	Viso	V _{EN} = 0.8V, R _L = 1kΩ C _L = 15pF, V _S = 7V _{RMS} f = 100kHz	2, 3	+25°C	-50		dB

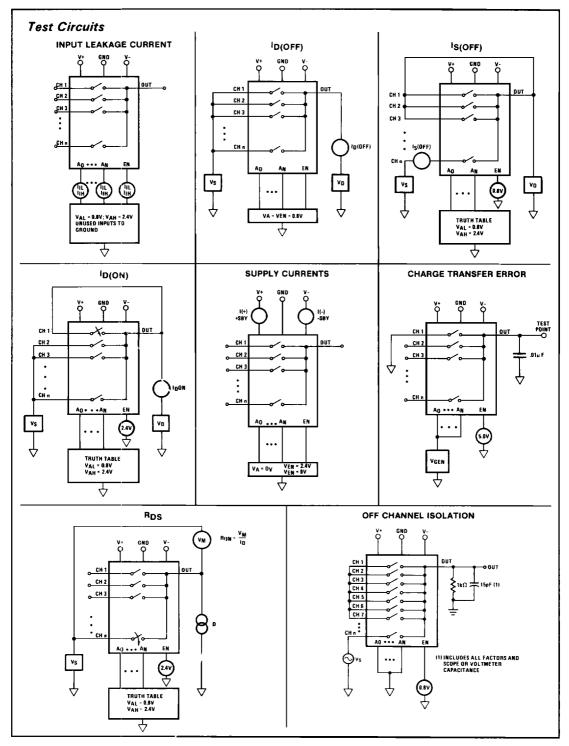
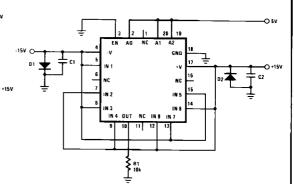

NOTE 2. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1, 2 & 3)				
Interim Electrical Parameters (Pre Burn-In)	1				
Final Electrical Test Parameters	1*, 2, 3, 9, 10, 11				
Group A Test Requirements	1, 2, 3, 9, 10, 11				
Groups C & D Endpoints	1				

[&]quot;PDA applies to Subgroup 1 only. No other subgroups are included in PDA.


^{3.} Worst case isolation occurs on channel 4 due to proximity of the output pins.

Burn-In Circuits HI-508/883 CERAMIC DIP 0.01

HI-508/883 LCC

NOTES:

R1 = $10k\Omega \pm 5\%$, 1/2 or 1/4W (per socket)

C1, C2 = $.01\mu$ F (per socket) or 0.1μ F (per row)

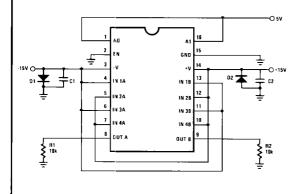
D1, D2 = IN4002 (or equivalent) (per board)

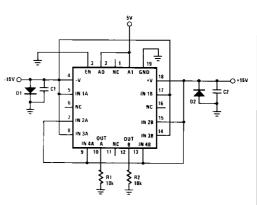
NOTES:

R1 = $10k\Omega \pm 5\%$, 1/2 or 1/4W (per socket)

C1, C2 = .01 μ F (per socket) or 0.1 μ F (per row)

D1, D2 = IN4002 (or equivalent) (per board)


HI-509/883 CERAMIC DIP


AZ

IN 7

IN:

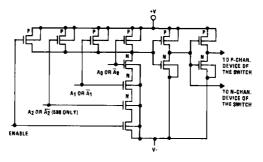
HI-509/883 LCC

NOTES:

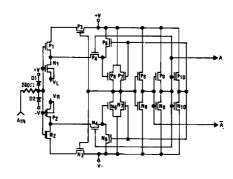
R1, R2 = $10k\Omega \pm 5\%$, 1/2 or 1/4W (per socket)

C1, C2 = .01 μ F (per socket) or 0.1 μ F (per row)

D1, D2 = IN4002 (or equivalent) (per board)

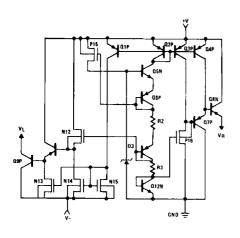

NOTES:

R1, R2 = $10k\Omega \pm 5\%$, 1/2 or 1/4W (per socket)

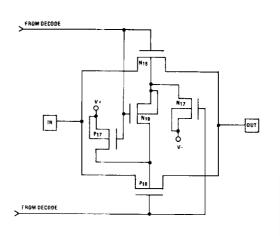

C1, C2 = .01µF (per socket) or 0.1µF (per row)
D1, D2 = IN4002 (or equivalent) (per board)

Schematic Diagrams

ADDRESS DECODER



ADDRESS INPUT BUFFER LEVER SHIFTER



All P-Channel Bodies to V+ Unless Otherwise Indicated

TTL REFERENCE CIRCUIT

MULTIPLEX SWITCH

Die Characteristics

DIE DIMENSIONS: 81.9 x 90.2 x 19 mil

METALLIZATION

Type: Al

Thickness: 16kÅ ± 2kÅ

GLASSIVATION

Type: Nitride

Thickness: $7kA \pm 0.7kA$

WORST CASE CURRENT DENSITY: 1.4 x 10⁵ A/cm²

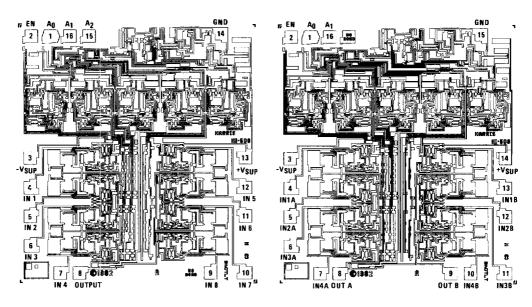
TRANSISTOR COUNT:

HI-508/883 243 HI-509/883 243

PROCESS: CMOS-DI

DIE ATTACH

Material: Gold Silicon Eutectic Alloy

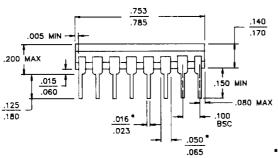

Temperature: Ceramic DIP — 460°C (Max)

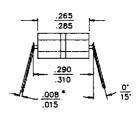
Ceramic LCC — 420°C (Max)

Metallization Mask Layout

HI-508/883

HI-509/883




NOTE: Pad Numbers Correspond to DIP Pin Numbers Only.

5

FB88

Packaging[†] 16 PIN CERAMIC DIP

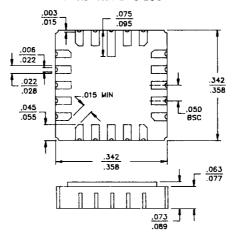
 INCREASE MAX LIMIT BY .003 INCHES MEASURED AT CENTER OF FLAT FOR SOLDER FINISH

LEAD MATERIAL: Type B LEAD FINISH: Type A

PACKAGE MATERIAL: Ceramic, 90% Alumina

PACKAGE SEAL

Material: Glass Frit Temperature: $450^{\circ}\text{C} \pm 10^{\circ}\text{C}$


Method: Furnace Seal

INTERNAL LEAD WIRE

Material: Aluminum Diameter: 1.25 Mil

Bonding Method: Ultrasonic COMPLIANT OUTLINE: 38510 D-2

20 PAD CERAMIC LCC

PAD MATERIAL: Type C
PAD FINISH: Type A
FINISH DIMENSION: Type A

PACKAGE MATERIAL: Multilayer Ceramic, 90% Alumina

PACKAGE SEAL

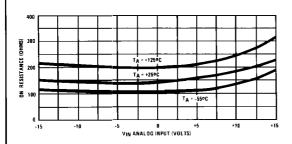
Material: Gold/Tin (80/20) Temperature: $320^{\circ}\text{C} \pm 10^{\circ}\text{C}$ Method: Furnace Braze

INTERNAL LEAD WIRE

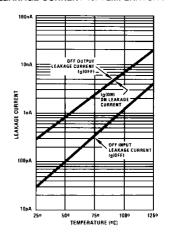
Material: Aluminum Diameter: 1.25 Mil

Bonding Method: Ultrasonic COMPLIANT OUTLINE: 38510 C-2

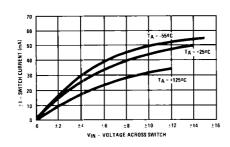
DESIGN INFORMATION

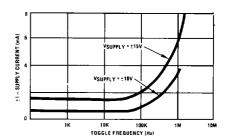

HI-508 HI-509

Single 8/Differential 4 Channel CMOS Analog Multiplexer


The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design data only. No guarantee is implied.

Typical Performance Characteristics Unless Otherwise Specified: TA = 25°C, VSUPPLY = ±15V, VAH = +2.4V, VAL = 0.8V


ON RESISTANCE vs. ANALOG INPUT VOLTAGE, TEMPERATURE


LEAKAGE CURRENT vs. TEMPERATURE

ON CHANNEL CURRENT vs. VOLTAGE

SUPPLY CURRENT vs. TOGGLE FREQUENCY

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

M74HCT4066ADTR2G ADG506ATE/883B DG406BDN-T1-E3 JM38510/19004BXA HEF4051BP 5962-8512704XA

NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G JM38510/19002BXA 016400E ADV3014KSTZ PI3V512QE FSA644UCX

FSA9591UCX FSSD07BQX MAX7356ETG NLV74HCT4851ADRG 7705201EC MAX4634ETBT MAX4578CAP+ PI2SSD3212NCE

MAX3997ETM+ NLV14052BDTR2G PI3L100QE PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+ PI3DBS12212AZBEX

PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G NLVAST4051DTR2G

PI3DBS12412AZHEX ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ-RL7 ADG5208FBRUZ-RL7 MAX14984ETG+ MAX14984ETG+T HV2818/R4X HV2918/R4X CBTU02044HEJ PS508LEX PS509LEX