

Current Transducer LA 305-S

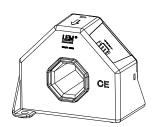
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

16173

Electrical data

I _{PN}	Primary nominal of Primary current, m		_	300 0 ± 5		0500	A A
$R_{_{\mathrm{M}}}$	Measuring resista		\mathbf{R}_{M}	: 70°C _{nin} R _{M max}	_ ^	85°C _{in} R _{M m}	
	with ± 12 V	$@ \pm 300 A_{max}$	0	52	0	50	Ω
		@ \pm 500 A _{max}	0	17	0	15	Ω
	with ± 15 V	@ \pm 300 A _{max}	0	75	5	73	Ω
		@ ± 500 A _{max}	0	31	5	29	Ω
I _{SN}	Secondary nomina			120		,	mΑ
K _N	Conversion ratio			1:250	0		
V _C	Supply voltage (±	5 %)		± 12	15		V
I _c	Current consumpt	ion		20 (@ :	± 15 V) + I _S	mΑ

Accuracy - Dynamic performance data


$\mathbf{X}_{\scriptscriptstyle{\mathrm{G}}}$	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.8		%
\mathcal{E}_{L}^{L}	Linearity error	< 0.1		%
		Тур	Max	
I_{o}	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$		± 0.20	mA
I _{OM}	Magnetic offset current $^{1)}$ @ $I_P = 0$ and specified R_M ,			mA
	after an overload of 3 x I _{PN}		± 0.40	mA
I _{OT}	Temperature variation of I _o - 10°C + 85°C	± 0.12	± 0.30	mA
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns
t ,	Response time 2) @ 90 % of I _{PN} step	< 1		μs
di/dt	di/dt accurately followed	> 100		A/µs
BW	Frequency bandwidth (- 3 dB)	DC 1	100	kHz

General data

T _A T _S	Ambient operating temperature Ambient storage temperature		- 10 + 85 - 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance	$ T_A = 70^{\circ} C $	35	Ω
		$ T_A = 85^{\circ} C $	37	Ω
m	Mass		200	g
	Standards		EN 50178: 1997	

Notes: 1) The result of the coercive force (Hc) of the magnetic circuit

$I_{PN} = 300 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

²⁾With a di/dt of 100 A/µs.

Current Transducer LA 305-S

Isolation characteristics				
\mathbf{V}_{d} $\mathbf{\hat{V}}_{w}$	Rms voltage for AC isolation test, 50 Hz, 1 min Impulse withstand voltage 1.2/50 μs	6 20 Min	kV kV	
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (group IIIa)	27 26.5 225	mm mm	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{\mathrm{w}}$	Rated insulation voltage	Nominal voltage
Single insulation	2500 V	2500 V
Reinforced insulation	1250 V	1250 V

According VDE 0160 (1994):

single insulation 3500 V Reinforced insulation 1750 V

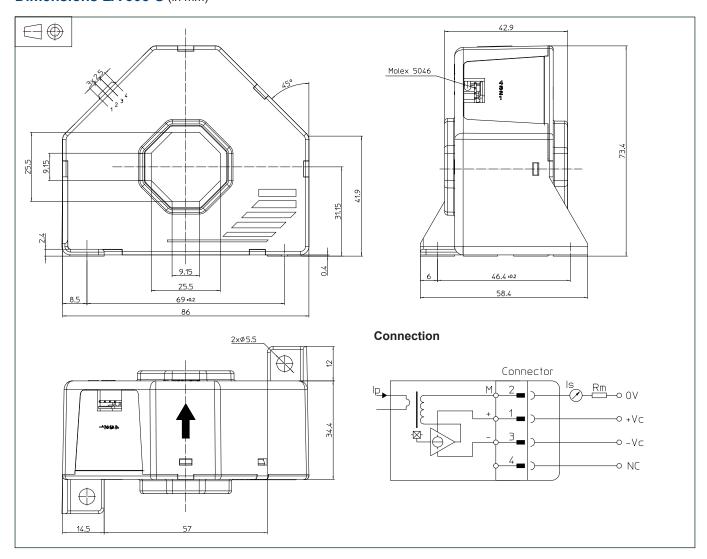
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 305-S (in mm)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque 4 Nm

- · Primary through-hole
- Connection of secondary
- ± 0.5 mm 2 holes Ø 5.5 mm 2 M5 steel screws 4 Nm 25.5 x 25.5 mm MOLEX 5046 4 pins

tin plated

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Specialized category:

Click to view products by Lem manufacturer:

Other Similar products are found below:

CY7C910-51LMB MC33689DPEWR2 MC33975TEKR2 MEC1632-AUE MC33978AEK NVT4555UKZ TJA1081TS,112 RKSAS4

HMC677G32 LPC47N207-JV FTP-637DSL633R MAX7348AEP+ SM712GX04LF04-BA DS2413P+T&R NCN5193MNTWG

MC34978AEK MC33689DPEW MC33889BPEG NCV7381DP0R2G PCA9704PWJ S6BT112A01SSBB202 MAX7347AEE+ DS8113
RNG+T&R DS8024-RJX+T&R NCN5192MNRG DS8023-RRX+T&R DS8024-RRX+T&R ST8034HCQR XP71055

TC7PCI3212MT,LF(S ASI4UE-F-G1-ST HOA6241-001 MEC1310-NU SC74HC4066ADTR2G TDA8035HNC1S1QL TNY380PN

RMT3PB080 AS3935-BQFT 0714300268 MAX9924UAUB/V+ MAX3120CUA+ MAX3171CAI NCN8025MTTBG DS8023-RRX

DS2406P+T&R DS8007-ENG+ DS8007A-EAG+ DS2482X-101T DS1886T+ DG407AK/883B