WR02X

APPROVAL SHEET

77110271					
±5%, ±1% General purpose chip resistors					
Customer	·				
Approval No					
Issue Date	:				
Customer App	oroval :				

FEATURE

- 1. Small size and light weight
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. Suitable for high density print circuit board assembly
- 5. Higher component and equipment reliability
- 6. Lead free product

APPLICATION

- Mobile phone
- PDA
- Camcorders
- Palmtop computers
- Hybrid module

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a pure Tin.

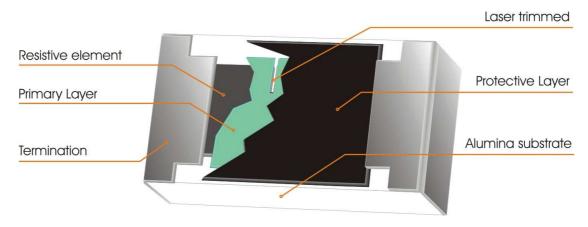
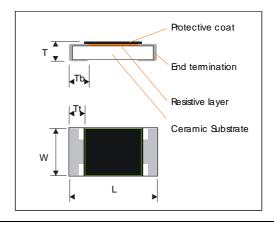


Fig 1. Consctruction of Chip-R WR02X

Page 2 of 7 WR02X Ver.10 Sep.2009

QUICK REFERENCE DATA

Item	General Speci	fication			
Series No.	WR02				
Size code	0201(060	0201(0603)			
Resistance Range	1Ω~10MΩ(±5%, ±1% tol	1Ω~10MΩ(±5%, ±1% tolerance), Jumper			
Resistance	±1%	±5%			
Tolerance	E96/E24	E24			
TCR (ppm/°C)					
R>1MΩ	1.1M - 10M, :	≤±200			
$1M\Omega > R > 10\Omega$	100Ω - 1MΩ, ≤	≤±200			
	10Ω - 97.6Ω, ≤	10Ω - 97.6Ω, ≤±300			
R<10Ω	1 - 9.76Ω, +600~-200				
Max. dissipation @ T _{amb} =70°C	1/20 W				
Max. Operation Voltage (DC or RMS)	25V	25V			
Max. Overload Voltage (DC or RMS)	50V				
Climatic category (IEC 60068)	55/125/50	55/125/56			


Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{RatedPower \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

Dimensions:

	WR02X		
L 0.60 ± 0.03			
W 0.30 ± 0.03			
T 0.23 ± 0.03			
Tb 0.15 ± 0.05			
Tt 0.10 ± 0.05			

Page 3 of 7 WR02X Ver.10 Sep.2009

Marking

WR02X has no marking.

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

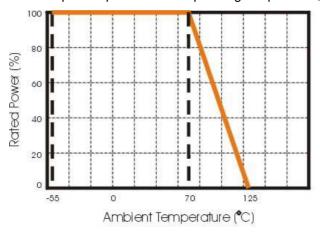


Figure 2. Maximum dissipation in percentage of rated power

As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 245°C during 3 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

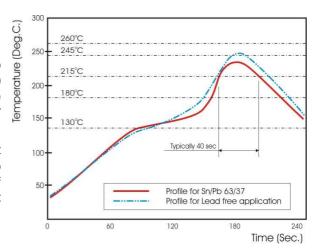


Fig 3. Infrared soldering profile for Chip Resistors WR02X

Page 4 of 7 WR02X Ver.10 Sep.2009

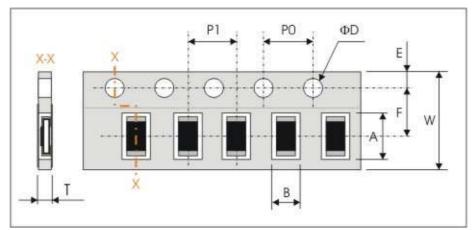
CATALOGUE NUMBERS

The resistors have a catalogue number starting with :

WR02	x	472_	J	A	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR02 : 0201	X : Normal	E24 : 2 significant digits followed by no. of zeros and a blank $4.7\Omega = 4R7_{-}$ $10\Omega = 100_{-}$ $220\Omega = 221_{-}$ Jumper = 000_ ("_" means a blank)	J:±5% F:±1% P:Jumper	A : 7" Reeled taping(15Kpcs/Reel)	L = Sn base (lead free)

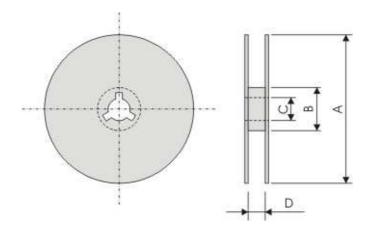
Page 5 of 7 WR02X Ver.10 Sep.2009

TEST AND REQUIREMENTS (JIS C 5201-1 : 1998)


TEST	DDOCEDURE / TEST METHOD	REQUIREMENT		
1591	PROCEDURE / TEST METHOD	Resistor	0Ω	
DC resistance	DC resistance values measured at the test voltages specified below :			
Clause 4.5	<10Ω@0.1V, <100Ω@0.3V, <1KΩ@1.0V,	Within the specified tolerance	<50mΩ	
	<10K Ω @3V, <100K Ω @10V, <1M Ω @25V, <10M Ω @30V			
Temperature	Natural resistance change per change in degree centigrade.	Refer to		
Coefficient of Resistance(T.C.R)	$R_2 - R_1$	"QUICK REFERENCE DATA"		
Clause 4.8	$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)} t_1 : 20\text{°C} + 5\text{°C} - 1\text{°C}$		N/a	
	R ₁ : Resistance at reference temperature			
	R ₂ : Resistance at test temperature			
Short time overload	Permanent resistance change after a 5second application of a voltage			
(S.T.O.L)	2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. \pm (2%+0.10 Ω)	<50mΩ	
Clause 4.13	,			
Resistance to soldering heat(R.S.H)	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 255°C±5°C	Δ R/R max. \pm (1%+0.05 Ω)	<50mΩ	
IEC 60068-2-58: 2004		no visible damage		
Solderability	Un-mounted chips completely immersed for 3±0.3second in a SAC	95% coverage min., good tinni	ng and no	
IEC 60068-2-58: 2004	solder bath at 245°C±5°C	visible damage		
Temperature cycling	30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes	AD/D ===== 1/40/ +0.050)	500	
Clause 4.19	at +125°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	Δ R/R max. \pm (1%+0.05 Ω)	< 50mΩ	
Damp Heat	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber	10Ω≤R<1MΩ :		
(Load life in humidity)	controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and	Δ R/R max. \pm (3%+0.10 Ω)	< 50mΩ	
Clause 4.24	0.5 hours off	R<10Ω, R≥1MΩ :		
Load Life (Endurance)	1000+48/-0 hours; loaded with RCWV or V _{max} in chamber controller	Δ R/R max. \pm (5%+0.10 Ω)		
Clause 4.25	70±2°C, 1.5 hours on and 0.5 hours off	Ditto.		
	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending	No visual damaged,		
Bending strength	once 5mm for 10sec.		< 50mΩ	
Clause 4.33		Δ R/R max. \pm (1%+0.05 Ω)		
Adhesion	Pressurizing force: 3N, Test time: 10±1sec.	No remarkable damage or remo	oval of the	
Clause 4.32		terminations		

Page 6 of 7 WR02X Ver.10 Sep.2009

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
WR02X	0.67±0.05	0.37±0.05	8.00±0.20	3.50±0.05	1.75±0.10

Series No.	P1	P0	ΦD	Т
WR02X	2.00±0.05	4.00±0.05	Ф1.50 ^{+0.1} _{-0.0}	0.45±0.05

Reel dimensions

Symbol	Α	В	С	D
(unit : mm)	Ф180.0+0/-1.5	Φ60.0±1.0	13.0±0.2	9.0+1/-0
	¥100.0+0/-1.5	Ф60.0+1/-0	10.020.2	3.51/1/-0

Taping quantity and Tape material

- Chip resistors 15,000 pcs/reel, Paper tape.

Production location in Ipoh plant, Malaysia within WTC group.

Page 7 of 7 WR02X Ver.10 Sep.2009

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors category:

Click to view products by Walsin manufacturer:

Other Similar products are found below:

MCR03EZPFX3162 MCR004YZPJ332 201007J022KT4E 201007F1653T4E 201007F6652T4E 0603WAF137KT5E RTT204702FTE RTT203000FTE RTT2056R0FTE CR2010F470KE04Z RTT018451FTH RTT021802DTH 0402WGF510LTCE 0201WMJ0200TEE TR0603B26K7P0550Z 0201WMF5102TEE 1210W2J047KT5E YLR12-2-4F-W HOT(0.25x1.3)-3.2-0R-I HOT(0.4x1.5)-5.2-0R-I HoT(0.45x1.5)-8.2-0R-I 0201WMF1103TEE 0201WMF7152TEE 1210W2J0124T5E 201007J010LT4E 201007J0360T4E 201007J0430T4E 1206W4F5231T5E 1210W2J0620T5E 201007J0822T4E 0201WMF1005TCE 0201WMF1212TCE 0201WMF1373TCE 0201WMF1400TCE 0201WMF2000TEE 0201WMF2001TCE 0201WMF2001TCE 0201WMF2001TCE 0201WMF3743TCE 0201WMF430JTCE 0201WMF490TCE 0201WMF5104TCE 0201WMF510JTEE 0201WMF5110TCE 0201WMF6652TEE 0201WMF6812TCE 0201WMF8200TCE 0201WMF9093TCE