

OPTICALLY COUPLED BILATERAL SWITCH NON-ZERO CROSSING TRIAC

APPROVALS

UL recognised, File No. E91231 under Package System 'KK'

'X'SPECIFICATIONAPPROVALS

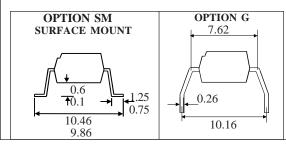
- VDE 0884 in 3 available lead forms:

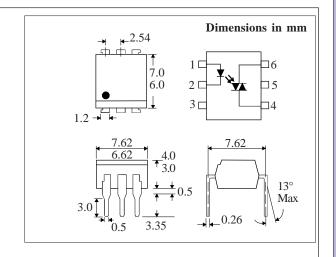
 - G form
 - SMD approved to CECC 00802

DESCRIPTION

The MOC302_ series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a light activated silicon bilateral switch performing the functions of a triac mounted in a standard 6 pin dual-in-line package.

FEATURE


Options:-


10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.

- High Isolation Voltage $(5.3kV_{RMS}, 7.5kV_{PK})$ 400V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- **CRTs**
- Power Triac Driver
- Motors
- Consumer appliances
- **Printers**

ABSOLUTE MAXIMUM RATINGS (25 °C unless otherwise noted)

Storage Temperature	-55°C-+150°C
Operating Temperature	$-40^{\circ}\text{C} - +100^{\circ}\text{C}$
Lead Soldering Temperature	260°C
(1.6mm from case for 10 seconds	s)

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW
(derate linearly 0.93mW/°C above 25°)	C)

OUTPUT PHOTO TRIAC

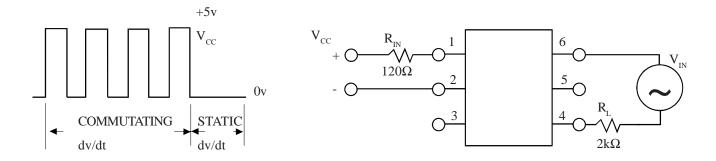
Off-State Output Terminal Voltage	400V
Forward Current (Peak)	1A
Power Dissipation	300mW
(derate linearly 4.0mW/°C above 25°C)	

POWER DISSIPATION

Total Power Dissipation	_ 330mW
(derate linearly 4.4mW/°C above 25°	C)

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1UD Tel: (01429) 863609 Fax: (01429) 863581


DB91045 27/11/08

ELECTRICAL CHARACTERISTICS ($T_{_{A}}$ = 25°C Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Current (I_R)		1.2	1.5 100	V µA	$I_{F} = 10\text{mA}$ $V_{R} = 6V$
Output	Peak Off-state Current (I_{DRM}) Peak Blocking Voltage (V_{DRM}) On-state Voltage (V_{TM}) Critical rate of rise of off-state Voltage (dv/dt) (note 1)	400	1.5	100	n A V V	$V_{DRM} = 400 V \text{ (note 1)}$ $I_{DRM} = 100 \text{nA}$ $I_{TM} = 100 \text{mA (peak)}$
	Critical rate of rise of commutating Voltage (dv/dt) (note 1)	0.1	0.2		V/µs	Iload = 15 mA, $V_{IN} = 30V \text{ (fig 1.)}$
Coupled	Input Current to Trigger (I _{FT})(note 2) IS6015 IS6010 IS6005 MOC3023			15 10 5	mA mA mA	$V_D = 3V \text{ (note 2)}$
	Holding Current , either direction ($\rm I_{\rm H}$)	100			μА	
	Input to Output Isolation Voltage $V_{\rm ISO}$	5300 7500			$egin{array}{c} V_{_{RMS}} \ V_{_{PK}} \end{array}$	See note 3 See note 3

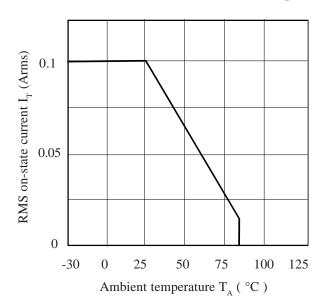
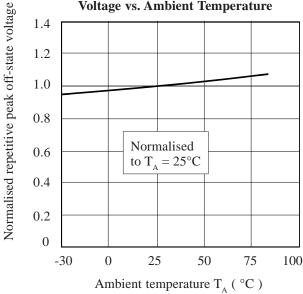
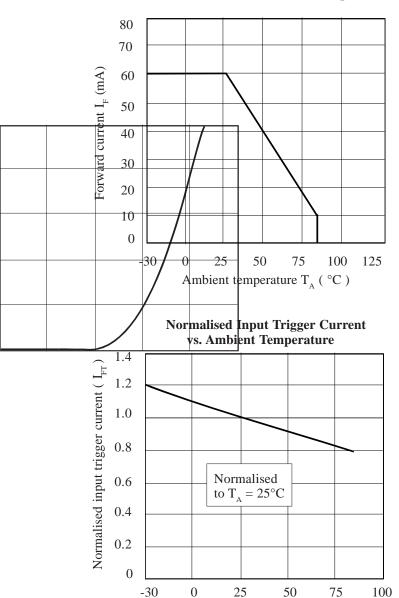

- Note 1. Test voltage must be applied within dv/dt rating. Note 2. Guaranteed to trigger at an $\, I_F \,$ value less than or equal to max. $\, I_{FT} \,$, recommended $\, I_F \,$ lies between Rated $\, I_{FT} \,$ and absolute max. $\, I_{FT} \,$. Note 3. Measured with input leads shorted together and output leads shorted together.

FIGURE 1

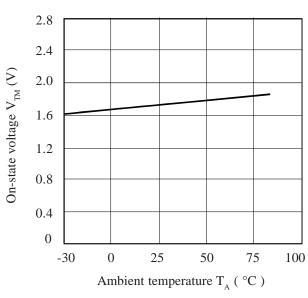


27/11/08 DB91045m-AAS/A5

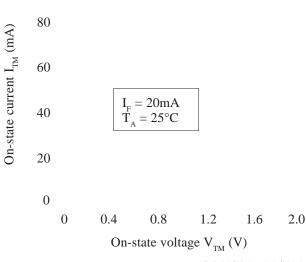
RMS On-state Current vs. Ambient Temperature



Normalised Repetitive Peak Off-state Voltage vs. Ambient Temperature



Forward Current vs. Ambient Temperature


Ambient temperature T_A (°C)

On-state Voltage vs. Ambient Temperature

On-state Current vs. On-state Voltage

100

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for isocom manufacturer:

Other Similar products are found below:

SFH615A-2SM H11A1 MOC3021M ISD74X IS60SM MOC3043X ICPL4503SM PS2505-4 MOC3021XSM MOCD207 ISP620-1X

4N26X IS60SMT&R MOC3083 MOC3081M ICPL2531SM PS2502-2 IS341W SFH617A-4X MOC3043M PS2502-2SM ILQ74X

MOC3021X ICPL2601 IS181C PS2502-4SM ICPL2530SM MOC3041SM ISQ74X 4N25X CNY17-2XSM CNY17-1XSM MOC3023M

H11AA1XSM ISQ2X PS2505-4SM TIL199 4N32FSM 4N35X MOC3020X H21A3 IS281C MOC3061X ISP817B MOC3041M

ICPL2631 ILQ1XSM MOC3022X CNY17F-3X ICPL2631SM