IS4N46 IS4N45

LOW INPUT CURRENT **DARLINGTON OUTPUT OPTICALLY COUPLED ISOLATOR**

APPROVALS

UL recognised, File No. E91231 "JJ " 'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form : -
 - STD
 - G form
 - SMD approved to CECC 00802
- DESCRIPTION

The IS4N45, IS4N46 are optically coupled isolators consisting of an infrared light emitting diode and a NPN silicon photo darlington which has an integral base-emitter resistor to optimise switching speed and elevated temperature characteristics in a standard 6pin dual in line plastic package. These devices are designed to equal the 4N45, 4N46 characteristics while providing greater voltage and current capability.

FEATURES

- Options :-
- 10mm lead spread add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Isolation Voltage $(5.3kV_{RMS}, 7.5kV_{PK})$ High Current Transfer Ratio (1500% typ.)
- High $BV_{CEO}(55V \text{ min.})$
- Internal base-emitter resistor minimizes output leakage

Low input current 0.5mA I_F

APPLICATIONS

- Telephone ring detector
- Digital logic ground isolation
- Low input current line receiver
- Logic to reed relay interface
- Level shifting
- Interface between logic families
- Line voltage status indicator low input power dissipation

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature	-40° C to $+125^{\circ}$ C				
Operating Temperature	-25° C to $+100^{\circ}$ C				
Lead Soldering Temperature					
$(1/16 \operatorname{inch} (1.6 \operatorname{mm}) \operatorname{from case} \operatorname{for} 10 \operatorname{secs}) 260^{\circ} \mathrm{C}$					

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW

OUTPUT TRANSISTOR

Collector-emitter Voltage V _{CEO}	55V
Emitter-baseVoltage V _{EBO}	6V
Collector Current	150mA
Power Dissipation	300mW

POWERDISSIPATION

Total Power Dissipation

350mW

ISOCOM COMPONENTSLTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS251UD Tel: (01429) 863609 Fax :(01429) 863581

19/11/08

DB91024

	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F)		1.2	1.5	V	$I_F = 10 mA$
	Reverse Current (I_R)			10	μΑ	$V_R = 4V$
Output	Collector-emitter Breakdown (BVceo)	55			V	$I_c = 1mA$
	Emitter-collector Breakdown (BVeco)	0.1			V	$I_{\rm E} = 10 \mu A$
	Emitter-base Breakdown (BVebo)	6			V	$I_{\rm E} = 10 \mu A$
Coupled	DC Current Transfer Ratio (CTR) IS4N46 IS4N45 IS4N45 IS4N46, IS4N45 Logic Low Output Voltage (V _{OL}) IS4N46 IS4N46 IS4N45 IS4N46, IS4N45 Input to Output Isolation Voltage V _{ISO} Input-output Isolation Resistance R _{ISO} Input-output Capacitance Cf	350 500 250 200 5300 7500 5x10 ¹⁰	0.6 100 20	1.0 1.0 1.0 1.2 300 100	% % % % V V V V V V V V V FK Ω pF μS	$\begin{array}{l} 0.5 mAI_{\rm F}, 1VV_{\rm CE} \\ 1mAI_{\rm F}, 1VV_{\rm CE} \\ 1mAI_{\rm F}, 1VV_{\rm CE} \\ 10mAI_{\rm F}, 1.2VV_{\rm CE} \\ 10mAI_{\rm F}, 1.75mAI_{\rm OL} \\ 1mAI_{\rm F}, 5mAI_{\rm OL} \\ 1mAI_{\rm F}, 2.5mAI_{\rm OL} \\ 10mAI_{\rm F}, 20mAI_{\rm OL} \\ 10mAI_{\rm F}, 20mAI_{\rm OL} \\ \end{array}$ See note 1 See note 1 V_{\rm IO} = 500V (note 1) V = 0, f = 1MHz \\ V_{\rm CE} = 2V, I_{\rm C} = 20mA \\ R_{\rm L} = 100\Omega \end{array}

ELECTRICAL CHARACTERISTICS ($\rm T_{A}{=}~25^{\circ}C$ Unless otherwise noted)

Collector Power Dissipation vs. Ambient Temperature

Normalized Output Current vs. Collector-emitter Voltage

Normalized Output Current vs. Ambient Temperature

Collector Dark Current vs. Ambient Temperature

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for isocom manufacturer:

Other Similar products are found below :

 SFH615A-2SM
 H11A1
 MOC3021M
 ISD74X
 IS60SM
 MOC3043X
 ICPL4503SM
 PS2505-4
 MOC3021XSM
 MOCD207
 ISP620-1X

 4N26X
 IS60SMT&R
 MOC3083
 MOC3081M
 ICPL2531SM
 PS2502-2
 IS341W
 SFH617A-4X
 MOC3043M
 PS2502-2SM
 ILQ74X

 MOC3021X
 ICPL2601
 IS181C
 PS2502-4SM
 ICPL2530SM
 MOC3041SM
 ISQ74X
 4N25X
 CNY17-2XSM
 CNY17-1XSM
 MOC3023M

 H11AA1XSM
 ISQ2X
 PS2505-4SM
 TIL199
 4N32FSM
 4N35X
 MOC3020X
 H21A3
 IS281C
 MOC3061X
 ISP817B
 MOC3041M

 ICPL2631
 ILQ1XSM
 MOC3022X
 CNY17F-3X
 ICPL2631SM