0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package Rev. 02 — 13 January 2010 **Product data sheet** ### 1. Product profile ### 1.1 General description Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifier with an integrated guard ring for stress protection, encapsulated in a SOT23 small Surface Mounted Device (SMD) plastic package. Table 1. Product overview | Type number | Package | | Configuration | |-------------|---------|-------|---------------| | | NXP | JEITA | | | PMEG2005ET | SOT23 | - | single diode | | PMEG3005ET | SOT23 | - | single diode | | PMEG4005ET | SOT23 | - | single diode | #### 1.2 Features - Forward current: 0.5 A - Very low forward voltage - Small SMD plastic package ### 1.3 Applications - Low voltage rectification - High efficiency DC-to-DC conversion - Switch mode power supply - Inverse polarity protection - Low power consumption applications ### 1.4 Quick reference data Table 2. Quick reference data | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------|-----------------|------------------------|------------|-----|-----|------| | I _F | forward current | | - | - | 0.5 | Α | | V_R | reverse voltage | | | | | | | | PMEG2005ET | | - | - | 20 | V | | | PMEG3005ET | | - | - | 30 | V | | | PMEG4005ET | | - | - | 40 | V | | V _F | forward voltage | $I_F = 500 \text{ mA}$ | <u>[1]</u> | | | | | | PMEG2005ET | | - | 355 | 390 | mV | | | PMEG3005ET | | - | 380 | 430 | mV | | | PMEG4005ET | | - | 420 | 470 | mV | ^[1] Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$ ## 2. Pinning information Table 3. Pinning | Pin | Description | Simplified outline | Symbol | |-----|---------------|--------------------|------------------| | 1 | anode | | | | 2 | not connected | <u> 3</u> | 1 2 | | 3 | cathode | 1 2 | n.c.
3 mlc357 | ## 3. Ordering information Table 4. Ordering information | Type number | Package | | | | |-------------|---------|--|---------|--| | | Name | Description | Version | | | PMEG2005ET | - | plastic surface mounted package; 3 leads | SOT23 | | | PMEG3005ET | - | plastic surface mounted package; 3 leads | SOT23 | | | PMEG4005ET | - | plastic surface mounted package; 3 leads | SOT23 | | PMEGXX05ET_SER_2 © NXP B.V. 2010. All rights reserved. ## 4. Marking Table 5. Marking codes | Type number | Marking code ^[1] | |-------------|-----------------------------| | PMEG2005ET | P3* | | PMEG3005ET | P4* | | PMEG4005ET | P5* | ^{[1] * = -:} made in Hong Kong ## 5. Limiting values Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------------------|---|--------------|------|------| | V_{R} | reverse voltage | | | | | | | PMEG2005ET | | - | 20 | V | | | PMEG3005ET | | - | 30 | V | | | PMEG4005ET | | - | 40 | V | | I _F | forward current | | - | 0.5 | А | | I _{FRM} | repetitive peak forward current | $t_p \leq 1 \text{ ms; } \delta \leq 0.5$ | - | 3.9 | А | | I _{FSM} | non-repetitive peak forward current | t _p = 8 ms square
wave | [1] - | 10 | Α | | P _{tot} | total power dissipation | $T_{amb} \le 25 ^{\circ}C$ | <u>[1]</u> - | 280 | mW | | | | | [2] _ | 420 | mW | | Tj | junction temperature | | - | 150 | °C | | T _{amb} | ambient temperature | | -65 | +150 | °C | | T _{stg} | storage temperature | | -65 | +150 | °C | ^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint. ### 6. Thermal characteristics Table 7. Thermal characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|-------------------------|-------------|--------|-----|-----|------| | $R_{th(j-a)}$ | thermal resistance from | in free air | [1][2] | - | 440 | K/W | | junction to ambient | | | [1][3] | - | 300 | K/W | ^[1] For Schottky barrier diodes thermal run-away has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses. Nomograms for determining the reverse power losses P_R and I_{F(AV)} rating will be available on request. [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm². PMEGXX05ET_SER_2 © NXP B.V. 2010. All rights reserved. ^{* =} p: made in Hong Kong ^{* =} t: made in Malaysia ^{* =} W: made in China ^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm². ^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. ### 7. Characteristics Table 8. Characteristics $T_{amb} = 25$ °C unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------|-------------------|---------------------------|------------|-----|-----|------| | V _F | forward voltage | | <u>[1]</u> | | | | | | PMEG2005ET | $I_F = 0.1 \text{ mA}$ | - | 90 | 130 | mV | | | | $I_F = 1 \text{ mA}$ | - | 150 | 190 | mV | | | | $I_F = 10 \text{ mA}$ | - | 210 | 240 | mV | | | | I _F = 100 mA | - | 280 | 330 | mV | | | | $I_F = 500 \text{ mA}$ | - | 355 | 390 | mV | | | PMEG3005ET | $I_F = 0.1 \text{ mA}$ | - | 90 | 130 | mV | | | | $I_F = 1 \text{ mA}$ | - | 150 | 200 | mV | | | | $I_F = 10 \text{ mA}$ | - | 215 | 250 | mV | | | | I _F = 100 mA | - | 285 | 340 | mV | | | | $I_F = 500 \text{ mA}$ | - | 380 | 430 | mV | | | PMEG4005ET | $I_F = 0.1 \text{ mA}$ | - | 95 | 130 | mV | | | | $I_F = 1 \text{ mA}$ | - | 155 | 210 | mV | | | | $I_F = 10 \text{ mA}$ | - | 220 | 270 | mV | | | | I _F = 100 mA | - | 295 | 350 | mV | | | | $I_F = 500 \text{ mA}$ | - | 420 | 470 | mV | | R | reverse current | | | | | | | | PMEG2005ET | V _R = 10 V | - | 15 | 40 | μΑ | | | | V _R = 20 V | - | 40 | 200 | μΑ | | | PMEG3005ET | V _R = 10 V | - | 12 | 30 | μΑ | | | | V _R = 30 V | - | 40 | 150 | μΑ | | | PMEG4005ET | V _R = 10 V | - | 7 | 20 | μΑ | | | | V _R = 40 V | - | 30 | 100 | μΑ | | C_d | diode capacitance | $V_R = 1 V$; $f = 1 MHz$ | | | | | | | PMEG2005ET | | - | 66 | 80 | pF | | | PMEG3005ET | | - | 55 | 70 | pF | | | PMEG4005ET | | - | 43 | 50 | pF | ^[1] Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$ 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 125 \, ^{\circ}C$ - (3) $T_{amb} = 85 \, ^{\circ}C$ - (4) $T_{amb} = 25 \, ^{\circ}C$ - (5) $T_{amb} = -40 \, ^{\circ}C$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 125 \, ^{\circ}C$ - (3) $T_{amb} = 85 \, ^{\circ}C$ - (4) $T_{amb} = 25 \,^{\circ}C$ - (5) $T_{amb} = -40 \, ^{\circ}C$ Fig 2. PMEG2005ET: Reverse current as a function of reverse voltage; typical values $T_{amb} = 25 \, ^{\circ}C; f = 1 \, MHz$ Fig 3. PMEG2005ET: Diode capacitance as a function of reverse voltage; typical values 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 125 \, ^{\circ}C$ - (3) $T_{amb} = 85 \, ^{\circ}C$ - (4) $T_{amb} = 25 \, ^{\circ}C$ - (5) $T_{amb} = -40 \, ^{\circ}C$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 125 \, ^{\circ}C$ - (3) $T_{amb} = 85 \, ^{\circ}C$ - (4) $T_{amb} = 25 \,^{\circ}C$ - (5) $T_{amb} = -40 \, ^{\circ}C$ Fig 5. PMEG3005ET: Reverse current as a function of reverse voltage; typical values $T_{amb} = 25 \,^{\circ}C; f = 1 \, MHz$ Fig 6. PMEG3005ET: Diode capacitance as a function of reverse voltage; typical values 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 125 \, ^{\circ}C$ - (3) $T_{amb} = 85 \, ^{\circ}C$ - (4) $T_{amb} = 25 \, ^{\circ}C$ - (5) $T_{amb} = -40 \, ^{\circ}C$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 125 \, ^{\circ}C$ - (3) $T_{amb} = 85 \, ^{\circ}C$ - (4) $T_{amb} = 25 \, ^{\circ}C$ - (5) $T_{amb} = -40 \, ^{\circ}C$ Fig 8. PMEG4005ET: Reverse current as a function of reverse voltage; typical values $T_{amb} = 25 \, ^{\circ}C; f = 1 \, MHz$ Fig 9. PMEG4005ET: Diode capacitance as a function of reverse voltage; typical values ## 8. Package outline ## 9. Packing information Table 9. Packing methods The -xxx numbers are the last three digits of the 12NC ordering code.[1] | Type number | Package | Description | Packing | quantity | |-------------|---------|--------------------------------|---------|----------| | | | | 3000 | 10000 | | PMEG2005ET | SOT23 | 4 mm pitch, 8 mm tape and reel | -215 | -235 | | PMEG3005ET | | | | | | PMEG4005ET | | | | | [1] For further information and the availability of packing methods, see Section 13. 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package ## 10. Soldering 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package ## 11. Revision history #### Table 10. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |------------------|--|------------------------------|-----------------------------|------------------| | PMEGXX05ET_SER_2 | 20100113 | Product data sheet | - | PMEGXX05ET_SER_1 | | Modifications: | This data sheet was changed to reflect the new company name NXP Semiconductor including new legal definitions and disclaimers. No changes were made to the tech content. | | | | | | Figure 11 Re | eflow soldering footprint So | <u> Л23 (ТО-236АВ)</u> . up | uaieu | | PMEGXX05ET_SER_1 | 20050715 | Product data sheet | - | - | 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package ### 12. Legal information #### 12.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 12.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. #### 12.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. #### 12.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 13. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com PMEGXX05ET_SER_2 © NXP B.V. 2010. All rights reserved. 0.5 A very low V_F MEGA Schottky barrier rectifiers in SOT23 package ### 14. Contents | 1 | Product profile | |------|---------------------------| | 1.1 | General description | | 1.2 | Features | | 1.3 | Applications | | 1.4 | Quick reference data | | 2 | Pinning information | | 3 | Ordering information | | 4 | Marking 3 | | 5 | Limiting values 3 | | 6 | Thermal characteristics 3 | | 7 | Characteristics4 | | 8 | Package outline | | 9 | Packing information 8 | | 10 | Soldering 9 | | 11 | Revision history | | 12 | Legal information | | 12.1 | Data sheet status | | 12.2 | Definitions | | 12.3 | Disclaimers | | 12.4 | Trademarks11 | | 13 | Contact information | | 1/ | Contents 12 | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2010. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 13 January 2010 Document identifier: PMEGXX05ET_SER_2 ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for nxp manufacturer: Other Similar products are found below: MC13211R2 PCA9518PW,112 LFSTBEB865X MC33399PEFR2 PCA9551PW,112 MC34825EPR2 CBTW28DD14AETJ PCF8583P MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT16AVLC MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDM-KW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG-176DS MPC860PCVR66D4 BT137-600E BT139X-600.127 BUK7628-100A118 BUK765R0-100E.118 BZT52H-B9V1.115 BZV85-C3V9.113 BZX79-C47.113 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC