Luckylight

5mm Round With Flange Type Hyper Red LED
 Technical Data Sheet

Part No.: 583VC2C-V1-4DA

Luckylight

Features:

\diamond Standard T-1 3/4 package.
\diamond Bulk, Available on tape and reel.
\diamond Viewing angle $=10^{\circ}$.
\diamond High efficiency.
\diamond Reliable and robust.
\diamond The product itself will remain within RoHS compliant Version.

Descriptions:

\diamond The series is specially designed for applications requiring higher brightness.
\diamond The LED lamps are available with different colors, intensities.

Applications:

\diamond TV set.
\diamond Monitor.
\diamond Telephone.
\diamond Computer.
\diamond Circuit board.
\diamond Status indicators.
\diamond Commercial use.
\diamond Advertising Signs.
\diamond Back lighting.

Luckylight

Package Dimension:

Polarity

Part No.	Chip Material	Lens Color	Source Color
583VC2C-V1-4DA	AIGaInP	Water Clear	Hyper Red

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$ unless otherwise noted.
3. Protruded resin under flange is 1.00 mm (.039") max.
4. Specifications are subject to change without notice.

Luckylight

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Max.	Unit
Power Dissipation	PD	65	mW
Peak Forward Current $(1 / 10$ Duty Cycle, $0.1 \mathrm{~ms} \mathrm{Pulse} \mathrm{Width)}$	IFP	100	mA
Forward Current	IF	25	mA
Reverse Voltage	VR	5	V
Electrostatic Discharge (HBM)	ESD	2000	V
Operating Temperature Range	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	Tstg	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Soldering Temperature (.157") From Body]	Tsld	$260^{\circ} \mathrm{C}$ for 5 Seconds	

Electrical Optical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity *	IV	14000	23000	---	mcd	IF=20mA (Note 1)
Viewing Angle *	$2 \theta_{1 / 2}$	---	10	---	Deg	IF=20mA (Note 2)
Peak Emission Wavelength	λp	---	632	---	nm	$\mathrm{IF}=20 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$	---	624	---	nm	$\mathrm{IF}=20 \mathrm{~mA}$ (Note 3)
Spectral Line Half-Width	$\triangle \lambda$	---	20	---	nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Forward Voltage	VF	1.60	2.00	2.60	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse Current	IR	---	---	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$

Notes:

1. Luminous Intensity Measurement allowance is $\pm 10 \%$.
2. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength ($\lambda \mathrm{d}$) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Luckylight

Typical Electrical / Optical Characteristics Curves

($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)

Forward Current \& Forward Voltage

Luminous Intensity \&

Forward Current Derating Curve

Luminous Intensity \& Forward Current

Radiation Diagram

Luckylight

Reliability Test Items And Conditions:

The reliability of products shall be satisfied with items listed below:
Confidence level: 90\%.
LTPD: 10\%.

1) Test Items and Results:

Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 300302 \end{aligned}$	TsId $=260 \pm 5^{\circ} \mathrm{C}$, 10 sec 3 mm from the base of the epoxy bulb	1 time	0/100
Solder ability	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 300303 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Tsld }=235 \pm 5^{\circ} \mathrm{C}, 5 \mathrm{sec} \\ \text { (using flux) } \\ \hline \end{gathered}$	1 time over 95\%	0/100
Thermal Shock	$\begin{gathered} \text { JEITA ED-4701 } \\ 300307 \end{gathered}$	$0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} 15 \mathrm{sec}, 15 \mathrm{sec}$	100 cycles	0/100
Temperature Cycle	$\begin{gathered} \text { JEITA ED-4701 } \\ 100105 \end{gathered}$	$-40^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$ $30 \mathrm{~min}, 5 \mathrm{~min}, 30 \mathrm{~min}, 5 \mathrm{~min}$	100 cycles	0/100
Moisture Resistance Cycle	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 200203 \\ & \hline \end{aligned}$	$\begin{gathered} 25^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C} \sim-10^{\circ} \mathrm{C} 90 \% \mathrm{RH} \\ 24 \mathrm{hrs} / 1 \mathrm{cycle} \\ \hline \end{gathered}$	10 cycles	0/100
High Temperature Storage	$\begin{gathered} \text { JEITA ED-4701 } \\ 200201 \end{gathered}$	$\mathrm{Ta}=100^{\circ} \mathrm{C}$	1000hrs	0/100
Terminal Strength (Pull test)	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 400401 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Load } 10 \mathrm{~N}(1 \mathrm{kgf}) \\ 10 \pm 1 \mathrm{sec} \\ \hline \end{gathered}$	No noticeable damage	0/100
Terminal Strength (bending test)	$\begin{gathered} \text { JEITA ED-4701 } \\ 400401 \\ \hline \end{gathered}$	$\begin{gathered} \text { Load } 5 \mathrm{~N}(0.5 \mathrm{kgf}) \\ 0^{\circ} \sim 90^{\circ} \sim 0^{\circ} \text { bend } 2 \text { times } \end{gathered}$	No noticeable damage	0/100
Temperature Humidity Storage	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 100103 \\ & \hline \end{aligned}$	$\mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{RH}=90 \%$	1000hrs	0/100
Low Temperature Storage	$\begin{aligned} & \text { JEITA ED-4701 } \\ & 200202 \\ & \hline \end{aligned}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$	1000hrs	0/100
Steady State Operating Life		$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{IF}=30 \mathrm{~mA}$	1000hrs	0/100
Steady State Operating Life of High Humidity Heat		$\begin{gathered} \mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{RH}=90 \%, \\ \mathrm{IF}=30 \mathrm{~mA} \end{gathered}$	500hrs	0/100
Steady State Operating Life of Low Temperature		$\mathrm{Ta}=-30^{\circ} \mathrm{C}, \mathrm{IF}=20 \mathrm{~mA}$	1000hrs	0/100

2) Criteria for Judging the Damage:

Item	Symbol	Test Conditions	Criteria for Judgment Min	
Forward Voltage	VF	IF=20mA	---	F.V.* $) \times 1.1$
Reverse Current	IR	VR=5V	---	F.V.* $) \times 2.0$
Luminous Intensity	IV	IF=20mA	F.V.* $) \times 0.7$	---

[^0]
Luckylight

Please read the following notes before using the product:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).
2. Storage
2.1 Do not open moisture proof bag before the products are ready to use.
2.2 Before opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 80% RH or less.
2.3 The LEDs should be used within a year.
2.4 After opening the package, the LEDs should be kept at $30^{\circ} \mathrm{C}$ or less and 60% RH or less.
2.5 The LEDs should be used within 168 hours (7 days) after opening the package.
3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than $260^{\circ} \mathrm{C}$ for 5 seconds within once in less than the soldering iron capacity 25 W . Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3 mm clearance from the base of the lens to the soldering point.
To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering conditions:

Soldering Iron		Wave Soldering	
Temperature	$300^{\circ} \mathrm{C}$ Max.	Pre-heat	$100^{\circ} \mathrm{C}$ Max.
Soldering Time	3 sec. Max.	Pre-heat Time	60 sec. Max.
	(one time only)	Solder Wave	$260^{\circ} \mathrm{C}$ Max.
		Soldering Time	5 sec. Max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard LEDs - Through Hole category:
Click to view products by Lucky Light manufacturer:
Other Similar products are found below :
LTL-10254W LTL-1214A LTL-1BEDJ LTL-2231AT LTL-3251A LTL-4262N LTL-5234 LTL87HTBK LTW-87HD4B 7383/V7C3-BSTA-L/PR3/MS G22041431007J2C000 HLMP-AG64-X10ZZ HLMP-EG1A-Z10DV HLMP-EL3B-WXKDD HLMP-HB74-UVBDD HLMP-HG65-VY0DD HLMP-HM74-34CDD HLMP-HM75-34CDD 1L0532V23G0TD001 NSPW500CS C4SMA-BGF-CQ34Q3C2 L53GC13 264-7SURTS530-A3 L-C150JRCT S4SMS-BJF-CQ42QGF2 S4SMS-GJF-CW12QMF2 LD CQDP-1U3U-W5-1-K LNX998CKBDA LO566UHR3-70G-A3 SLA560WBD2PT3 LP379PPG1C0G0300001 SLR-322MCT32 SLR-342DUT32 SLR-342MC3F SLR343BC7TT32 SLR343BCTT32 SLX-LX3044GD SLX-LX3044ID SLX-LX3044YD SNW-LX504SRC/4 1.90690.3330000 SSLLX20483ID SSL-LX3034YD SSL-LX5093LGT-11 SSL-LX5093PGC SSL-LX5093SRC/F SSL-LX5093SYT SSL-LX5099SRSGC-CA SSL-LX509E3SIT SSL-LX509FT3ID

[^0]: *) F.V.: First Value.

