CY7C131E, CY7C131AE
CY7C136E, CY7C136AE
$1 \mathrm{~K} / 2 \mathrm{~K} \times 8$ Dual-port Static RAM

Features

■ True dual-ported memory cells, which allow simultaneous reads of the same memory location
■ $1 \mathrm{~K} / 2 \mathrm{~K} \times 8$ organization
■ 0.35 micron complementary metal oxide semiconductor (CMOS) for optimum speed and power
■ High speed access: 15 ns

- Low operating power: $\mathrm{I}_{\mathrm{CC}}=110 \mathrm{~mA}$ (typical),

Standby: $I_{\text {SB3 }}=0.05 \mathrm{~mA}$ (typical)
■ Fully asynchronous operation

- Automatic power-down
- $\overline{\text { BUSY }}$ output flag to indicate access to the same location by both ports
■ INT flag for port-to-port communication
■ Available in 52-pin plastic leaded chip carrier (PLCC), 52-pin plastic quad flat package (PQFP)
■ Pb-free packages available

Functional Description

CY7C131E / CY7C131AE / CY7C136E / CY7C136AE are high-speed, low-power CMOS $1 \mathrm{~K} / 2 \mathrm{~K} \times 8$ dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C131E / CY7C131AE / CY7C136E / CY7C136AE can be used as a standalone dual-port static RAM. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.
Each port has independent control pins; chip enable ($\overline{\mathrm{CE}}$), write enable (R / \bar{W}), and output enable ($\overline{\mathrm{OE}})$. Two flags are provided on each port, BUSY and INT. The BUSY flag signals that the port is trying to access the same location, which is currently being accessed by the other port. The INT is an interrupt flag indicating that data is placed in a unique location ${ }^{[1]}$. The BUSY and INT flags are push pull outputs. An automatic power-down feature is controlled independently on each port by the chip enable (CE) pins.
The CY7C131E / CY7C131AE / CY7C136E / CY7C136AE are available in 52-pin Pb-free PLCC and 52-pin Pb-free PQFP.

Logic Block Diagram

[^0]CY7C131E, CY7C131AE CY7C136E, CY7C136AE

Contents

Pin Configurations 3
Pin Definitions 3
Selection Guide 3
Maximum Ratings 4
Operating Range 4
Electrical Characteristics 4
Capacitance 5
AC Test Loads and Waveforms 5
Switching Characteristics 6
Switching Characteristics 8
Switching Waveforms 10
Ordering Information 15
Ordering Code Definitions 15
Package Diagrams 16
Acronyms 17
Document Conventions 17
Units of Measure 17
Document History Page 18
Sales, Solutions, and Legal Information 19
Worldwide Sales and Design Support 19
Products 19
PSoC Solutions 19

Pin Configurations

Figure 1. Pin Diagram - 52-pin PLCC (Top View)

Figure 2. Pin Diagram - 52-pin PQFP (Top View)

Pin Definitions

Left Port	Right Port	Description
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{C E}_{R}$	Chip Enable
$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
$\mathrm{A}_{0 \mathrm{~L}}-\mathrm{A}_{9 / 10 \mathrm{~L}}{ }^{[5]}$	$\mathrm{A}_{0 \mathrm{R}}-\mathrm{A}_{9 / 10 \mathrm{R}}{ }^{[5]}$	Address
$1 / \mathrm{O}_{0 \mathrm{~L}}-1 / \mathrm{O}_{7 \mathrm{~L}}$	$\mathrm{I} / \mathrm{O}_{0 \mathrm{R}}-\mathrm{I} / \mathrm{O}_{7 \mathrm{R}}$	Data Bus Input/Output
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	Interrupt Flag
$\overline{\text { BUSY }}_{\text {L }}$	$\overline{B U S Y}_{\text {R }}$	Busy Flag
V_{CC}		Power
GND		Ground

Selection Guide

Parameter	$\begin{gathered} \text { 7C131E-15 } \\ \text { 7C131AE-15 } \end{gathered}$	$\begin{aligned} & \text { 7C131E-25 } \\ & \text { 7C136E-25 } \end{aligned}$	$\begin{gathered} \text { 7C131E-55 } \\ \text { 7C136E-55 } \\ \text { 7C136AE-55 } \end{gathered}$	Unit
Maximum Access Time	15	25	55	ns
Typical Operating Current	110	100	95	mA
Typical Standby Current for $\mathrm{I}_{\text {SB1 }}$ (both ports TTL level)	50	45	45	mA
Typical Standby Current for $\mathrm{I}_{\text {SB3 }}$ (Both ports CMOS level)	0.05	0.05	0.05	mA

Note
5. $1 \mathrm{~K} \times 8$: A0-A9, $2 \mathrm{~K} \times 8$: A0-A10, address lines are for both left and right ports.

CY7C131E, CY7C131AE
CY7C136E, CY7C136AE

Maximum Ratings

Exceeding maximum ratings ${ }^{[6]}$ may shorten the useful life of the device. User guidelines are not tested.
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied \qquad $-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$
Supply voltage to ground potential \qquad -0.3 V to +7.0 V
DC voltage applied to outputs in High Z State \qquad -0.5 V to +7.0 V

DC input voltage ${ }^{[8]}$ \qquad -0.5 V to +7.0 V Output current into outputs (LOW) 20 mA
Static discharge voltage >1100 V Latch up current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {cC }}$
Commercial	$0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		$\begin{gathered} \text { 7C131E-15 } \\ \text { 7C131AE-15 } \end{gathered}$			$\begin{aligned} & \text { 7C131E-25 } \\ & \text { 7C136E-25 } \end{aligned}$			$\begin{gathered} \text { 7C131E-55 } \\ \text { 7C136E-55 } \\ \text { 7C136AE-55 } \end{gathered}$			Unit
				Min	Typ ${ }^{[9]}$	Max	Min	Typ ${ }^{[9]}$	Max	Min	Typ ${ }^{[9]}$	Max	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	-	2.4	-	-	2.4	-		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$		-	-	0.4		-	0.4	-	-	0.4	V
V_{IH}	Input HIGH Voltage			2.2	-	-	2.2	-	-	2.2	-		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-	-	0.8		-	0.8	-	-	0.8	V
l_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output disabled		-20	-	+20	-20	-	+20	-20	-	+20	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	$\mathrm{V}_{c c}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$ Outputs disabled	Commercial Industrial	-	$\begin{aligned} & 110 \\ & 115 \end{aligned}$	$\begin{array}{\|l\|} \hline 190 \\ 200 \\ \hline \end{array}$	-	$\begin{aligned} & 100 \\ & 110 \end{aligned}$	$\begin{array}{\|l\|} \hline 170 \\ 180 \\ \hline \end{array}$	-	$\begin{gathered} \hline 95 \\ 105 \end{gathered}$	$\begin{aligned} & 160 \\ & 170 \end{aligned}$	mA
${ }^{\text {SB1 }}$	Standby Current, Both Ports, TTL Inputs	$\begin{aligned} & C E_{L} \text { and } \mathrm{CE}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}, \end{aligned}$	Commercial Industrial	-	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 70 \\ & 95 \end{aligned}$	-	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 95 \end{aligned}$	-	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 95 \end{aligned}$	mA
$\mathrm{I}_{\text {SB2 }}$	Standby Current, One Port, TTL Inputs	$C E_{L}$ or $C E_{R} \geq V_{I H}$, Active Port Outputs Open, $\mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[7]}$	Commercial Industrial	-	$\begin{aligned} & 120 \\ & 135 \end{aligned}$	$\begin{array}{\|l\|} \hline 180 \\ 205 \\ \hline \end{array}$	-	$\begin{aligned} & \hline 110 \\ & 135 \end{aligned}$	$\begin{array}{\|l\|} \hline 160 \\ 205 \\ \hline \end{array}$	-	$\begin{aligned} & \hline 110 \\ & 135 \end{aligned}$	$\begin{aligned} & 160 \\ & 205 \end{aligned}$	mA
$\mathrm{I}_{\text {SB3 }}$	Standby Current, Both Ports, CMOS Inputs	```Both Ports \(\overline{C E}_{L}\) and \(\overline{C E}_{R} \geq V_{C C}-\) 0.2 V , \(\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \mathrm{f}=0\)```	Commercial Industrial	-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	mA
${ }^{\text {SB4 }}$	Standby Current, One Port, CMOS Inputs	$\begin{aligned} & \text { One Port } \\ & \mathrm{CE}_{\mathrm{L}} \text { or } \overline{C E}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \\ & \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or V } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text {, } \\ & \text { Active Port Outputs Open, } \\ & \mathrm{f}=\mathrm{f}_{\text {MAX }} \end{aligned}$	Commercial Industrial	-	$\begin{aligned} & 110 \\ & 125 \end{aligned}$	$\begin{aligned} & 160 \\ & 175 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 175 \\ \hline \end{array}$	-	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 140 \\ & 175 \end{aligned}$	mA

[^1]
Capacitance ${ }^{[10]}$

Parameter	Description	Test Conditions	Max	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance		10	pF

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(b) Thévenin Equivalent (Load 1)

(c) Three-State Delay (Load 2) (Used for $\mathrm{t}_{\mathrm{LZ}}, \mathrm{t}_{\mathrm{HZ}}, \mathrm{t}_{\mathrm{HZWE}}$, and $\mathrm{t}_{\mathrm{LZWE}}$ including scope and jig)

Note
10. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics

Over the Operating Range

Parameter ${ }^{[11]}$	Description	7C131E-15/7C131AE-15		7C131E-25/7C136E-25		Unit
		Min	Max	Min	Max	
Read Cycle						
t_{RC}	Read cycle time	15	-	25	-	ns
$\mathrm{t}_{\text {AA }}$	Address to data valid ${ }^{[12]}$	-	15	-	25	ns
$\mathrm{t}_{\text {OHA }}$	Data hold from Address change	3	-	3	-	ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to data valid ${ }^{\text {[12] }}$	-	15	-	25	ns
$\mathrm{t}_{\text {Doe }}$	$\overline{\mathrm{OE}}$ LOW to data valid ${ }^{\text {[12] }}$	-	10	-	15	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}{ }^{[13,14,15]}$	3	-	3	-	ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}{ }^{[13,14,15]}$	-	10	-	15	ns
tlzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[13,14,15]}$	3	-	5	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[13,14,15]}$	-	10	-	15	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to power-up ${ }^{\text {[13] }}$	0	-	0	-	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to power-down ${ }^{[13]}$	-	15	-	25	ns
Write Cycle ${ }^{[16]}$						
t_{wc}	Write cycle time	15	-	25	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to write end	12	-	20	-	ns
$\mathrm{t}_{\text {AW }}$	Address setup to write end	12	-	20	-	ns
t_{HA}	Address hold from write end	0	-	0	-	ns
$\mathrm{t}_{\text {SA }}$	Address setup to write start	0	-	0	-	ns
$\mathrm{t}_{\text {PWE }}$	R/̄W pulse width	10	-	12	-	ns
$\mathrm{t}_{\text {SD }}$	Data setup to write end	10	-	15	-	ns
t_{HD}	Data hold from write end	0	-	0	-	ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[13]}$	R//W LOW to High $Z^{[15]}$	-	10	-	15	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[13]}$	R//̄W HIGH to Low $\mathrm{Z}^{[15]}$	3	-	3	-	ns

[^2]
Switching Characteristics (continued)

Over the Operating Range

Parameter ${ }^{[11]}$	Description	7C131E-15/7C131AE-15		7C131E-25/7C136E-25		Unit
		Min	Max	Min	Max	
Busy/Interrupt Timing ${ }^{[17]}$						
$\mathrm{t}_{\text {BLA }}$	$\overline{\text { BUSY }}$ LOW from Address match	-	15	-	20	ns
$\mathrm{t}_{\text {BHA }}$	$\overline{\text { BUSY }}$ HIGH from Address mismatch ${ }^{[18]}$	-	15	-	20	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\text { CE }}$ LOW	-	15	-	20	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\mathrm{CE}}$ HIGH ${ }^{[18]}$	-	15	-	20	ns
t_{PS}	Port setup for priority	5	-	5	-	ns
$\mathrm{t}_{\mathrm{BDD}}$	$\overline{\text { BUSY }}$ HIGH to valid data	-	15	-	25	ns
$\mathrm{t}_{\text {DDD }}$	Write data valid to read data valid ${ }^{\text {[19] }}$	-	25	-	30	ns
$\mathrm{t}_{\text {WDD }}$	Write pulse to data delay ${ }^{[19]}$	-	30	-	45	ns
Interrupt Timing						
${ }^{\text {W }}$ WINS	R//̄W to İNTERRUPT set time	-	15	-	25	ns
teIns	$\overline{\mathrm{CE}}$ to İINTERRUPT set time	-	15	-	25	ns
$\mathrm{t}_{\text {INS }}$	Address to INTERRUPT set time	-	15	-	25	ns
toinR	$\overline{\mathrm{OE}}$ to INTERRUPT reset time ${ }^{[18]}$	-	15	-	25	ns
$\mathrm{t}_{\mathrm{EINR}}$	$\overline{\mathrm{CE}}$ to INTERRUPT reset time ${ }^{\text {[18] }}$	-	15	-	25	ns
$\mathrm{t}_{\mathrm{INR}}$	Address to INTERRUPT reset time ${ }^{[18]}$	-	15	-	25	ns

[^3]CY7C131E, CY7C131AE
CY7C136E, CY7C136AE

Switching Characteristics

Over the Operating Range

Parameter	Description	$\begin{gathered} \text { 7C131E-55 } \\ \text { 7C136E-55 } \\ \text { 7C136AE-55 } \end{gathered}$		Unit
		Min	Max	
Read Cycle				
t_{RC}	Read cycle time	55	-	ns
t_{AA}	Address to data valid ${ }^{\text {[21] }}$	-	55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data hold from Address change	3	-	ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to data valid ${ }^{\text {[21] }}$	-	55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to data valid ${ }^{\text {[21] }}$	-	25	ns
t LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z ${ }^{\text {[21, 22, 23] }}$	3	-	ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z ${ }^{[21, ~ 22, ~ 23] ~}$	-	25	ns
t LZCE	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[21, ~ 22, ~ 23] ~}$	5	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[21, ~ 22, ~ 23] ~}$	-	25	ns
t_{PU}	$\overline{\text { CE }}$ LOW to power-up ${ }^{[22]}$	0	-	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to power-down ${ }^{[22]}$	-	35	ns
Write Cycle				
$\mathrm{t}_{\text {w }}$ c	Write cycle time	55	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{C E}$ LOW to write end	40	-	ns
$\mathrm{t}_{\text {AW }}$	Address setup to write end	40	-	ns
t_{HA}	Address hold from write end	2	-	ns
$\mathrm{t}_{\text {SA }}$	Address setup to write start	0	-	ns
$\mathrm{t}_{\text {PWE }}$	R/W pulse width	30	-	ns
$\mathrm{t}_{\text {SD }}$	Data setup to write end	20	-	ns
t_{HD}	Data hold from write end	0	-	ns
thzWE	R/W LOW to High $Z^{[24]}$	-	25	ns
tlzWE	R/W HIGH to Low ${ }^{[24]}$	3	-	ns
Busy/Interrupt Timing ${ }^{[20]}$				
$\mathrm{t}_{\text {BLA }}$	BUSY LOW from Address match	-	30	ns
$\mathrm{t}_{\text {BHA }}$	BUSY HIGH from Address mismatch ${ }^{[25]}$	-	30	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{B U S Y}$ LOW from $\overline{C E}$ LOW	-	30	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\text { CE }}$ HIGH ${ }^{25]}$	-	30	ns
$\mathrm{t}_{\text {PS }}$	Port setup for priority	5	-	ns
$\mathrm{t}_{\text {BDD }}$	BUSY HIGH to valid data	-	45	ns

Notes

20. Test conditions used are Load 2.
21. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and R / \bar{W} LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
22. AC Test Conditions use $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=1.4 \mathrm{~V}$.
23. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.
24. Parameters $t_{\text {LZCE }}, t_{\text {LZWE }}, t_{\text {HZOE }}, t_{\text {LZOE }}, t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are tested with $C=5 \mathrm{pF}$ as in part (b) of Figure 3 on page 5 . Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
25. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH. Port B's address toggled.

CY7C131E, CY7C131AE
CY7C136E, CY7C136AE

Switching Characteristics (continued)

Over the Operating Range

Parameter	Description	$\begin{gathered} \text { 7C131E-55 } \\ \text { 7C136E-55 } \\ \text { 7C136AE-55 } \end{gathered}$		Unit
		Min	Max	
$\mathrm{t}_{\text {DDD }}$	Write data valid to read data valid [26]	-	30	ns
${ }^{\text {t WDD }}$	Write pulse to data delay ${ }^{[26]}$	-	45	ns
Interrupt Timing				
$\mathrm{t}_{\text {WINS }}$	R/W to INTERRUPT set time	-	45	ns
teins	$\overline{C E}$ to INTERRUPT set time	-	45	ns
tins	Address to INTERRUPT set time	-	45	ns
$\mathrm{t}_{\text {OINR }}$	$\overline{\text { OE }}$ to INTERRUPT reset time ${ }^{[27]}$	-	45	ns
$\mathrm{t}_{\text {EINR }}$	$\overline{\mathrm{CE}}$ to INTERRUPT reset time ${ }^{\text {[27] }}$	-	45	ns
tinR	Address to INTERRUPT reset time ${ }^{[27]}$	-	45	ns

[^4]Figure 4. Read Cycle No. $1{ }^{[28,29]}$
Either Port ADDR Access

Figure 5. Read Cycle No. $2{ }^{[28,30]}$

Figure 6. Write Cycle No. 1 ($\overline{\mathrm{OE}}$ Three-States Data I/Os - Either Port) ${ }^{[31,32]}$

Notes

28. R/W is HIGH for read cycle.
29. Device is continuously selected, $\overline{C E}=\mathrm{V}_{\Perp}$ and $\overline{O E}=V_{I L}$
30. Address valid prior to or coincident with CE transition LOW
31. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and R/ \bar{W} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.
32. If $\overline{\mathrm{OE}}$ is LOW during a R / W controlled write cycle, the write pulse width must be the larger of $\mathrm{t}_{\mathrm{PWE}}$ or $\mathrm{t}_{\mathrm{HZWE}}+\mathrm{t}_{\mathrm{SD}}$ to allow the data I / O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.

CY7C131E, CY7C131AE CY7C136E, CY7C136AE

Switching Waveforms (continued)
Figure 7. Write Cycle No. 2 (R/ $\overline{\mathbf{W}}$ Three-States Data I/Os - Either Port) ${ }^{[33,34]}$

Figure 8. Read Cycle No. $3{ }^{[35]}$

Notes

33. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.
34. If the $\overline{C E}$ LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in a high impedance state.
35. $\overline{\mathrm{CEL}}=\overline{\mathrm{CER}}=\mathrm{LOW}$.
36. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and data to be placed on the bus for the required tSD. If OE is HIGH during a R/Wn controlled write cycle, this requirements does not apply and the write pulse can be as short as the specified tPWE.
37. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100% tested.

CY7C131E, CY7C131AE
CY7C136E, CY7C136AE

Switching Waveforms (continued)
Figure 9. Busy Timing Diagram No. 1 ($\overline{\mathrm{CE}}$ Arbitration) ${ }^{[38]}$

Figure 10. Busy Timing Diagram No. 2 (ADDR Arbitration) ${ }^{[38]}$

Note
38. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side $\overline{\mathrm{BUSY}}$ will be asserted.

CY7C131E, CY7C131AE
CY7C136E, CY7C136AE

Switching Waveforms (continued)
Figure 11. Interrupt Timing Diagrams

Right Side Clears $\overline{\mathrm{INT}}_{\mathrm{R}}$

[^5]CY7C131E, CY7C131AE
CY7C136E, CY7C136AE

Switching Waveforms (continued)
Figure 12. Interrupt Timing Diagrams

Ordering Information

$\begin{array}{\|c} \text { Speed } \\ \text { (ns) } \end{array}$	Ordering Code	Package Name	Package Type	Operating Range
$1 \mathrm{~K} \times 8$ Dual-port SRAM				
15	CY7C131AE-15JXI	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Industrial
	CY7C131E-15NXI	51-85042	52-pin Pb-free Plastic Quad Flatpack	
25	CY7C131E-25JXC	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Commercial
	CY7C131E-25NXC	51-85042	52-pin Pb-free Plastic Quad Flatpack	
55	CY7C131E-55JXC	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Commercial
	CY7C131E-55NXC	51-85042	52-pin Pb-free Plastic Quad Flatpack	
	CY7C131E-55JXI	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Industrial
	CY7C131E-55NXI	51-85042	52-pin Pb-free Plastic Quad Flatpack	
$2 \mathrm{~K} \times 8$ Dual-port SRAM				
25	CY7C136E-25JXC	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Commercial
	CY7C136E-25NXC	51-85042	52-pin Pb-free Plastic Quad Flatpack	
	CY7C136E-25JXI	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Industrial
55	CY7C136E-55JXC	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Commercial
	CY7C136E-55NXC	51-85042	52-pin Pb-free Plastic Quad Flatpack	
	CY7C136AE-55JXI	51-85004	52-pin Pb-free Plastic Leaded Chip Carrier	Industrial
	CY7C136AE-55NXI	51-85042	52-pin Pb-free Plastic Quad Flatpack	

Ordering Code Definitions

Package Diagrams

Figure 13. 52-pin PLCC (0.756×0.756 Inches) J52 Package Outline, 51-85004

51-85004 *C

Figure 14. 52-pin PQFP $(10 \times 10 \times 2.0 \mathrm{~mm})$ N5210 Package Outline, 51-85042

CY7C131E, CY7C131AE CY7C136E, CY7C136AE

Acronyms

Acronym	Description
$\overline{\mathrm{CE}}$	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
$\overline{\mathrm{OE}}$	output enable
PLCC	plastic leaded chip carrier
PQFP	plastic quad flat package
SRAM	static random access memory
TTL	transistor-transistor logic
$\overline{\mathrm{WE}}$	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
$\mu \mathrm{A}$	microampere
mA	milliampere
mV	millivolt
ns	nanosecond
Ω	ohm
$\%$	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C131E/CY7C131AE/CY7C136E/CY7C136AE, 1 K / $2 \mathrm{~K} \times 8$ Dual-port Static RAM Document Number: 001-64231

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	3038037	ADMU	09/24/2010	New data sheet
*A	3394800	ADMU	10/04/2011	Changed status from Preliminary to Final. Updated Maximum Ratings (Removed (Pin 48 to Pin 24)). Updated Electrical Characteristics (changed minimum value of I_{OZ} parameter from $-10 \mu \mathrm{~A}$ to $-20 \mu \mathrm{~A}$, changed maximum value of I_{Oz} parameter from $+10 \mu \mathrm{~A}$ to $+20 \mu \mathrm{~A}$ and changed maximum value of $\mathrm{I}_{\mathrm{SB} 3}$ from 0.5 mA to 15 mA for both Commercial and Industrial temperature ranges). Updated Package Diagrams (Updated revision of 51-85004 from *B to *C and revision of 51-85042 from *A to *C). Updated in new template.
*B	3403147	ADMU	10/12/2011	No technical updates.
*C	3435230	ADMU	11/17/2011	Updated Features (Removed a feature "Expandable data bus width to 16 bits or more using Master/Slave chip select when using more than one device." and updated another feature to read as "BUSY output flag to indicate access to the same location by both ports.". Updated Functional Description (Updated the sentence in the first paragraph to read as "The CY7C131E / CY7C131AE / CY7C136E / CY7C136AE can be used as a standalone dual-port static RAM.". Updated Note 2 to read as "BUSY is a push-pull output. No pull-up resistor required.". Updated Note 3 to read as "Interrupt: push-pull output. No pull-up resistor required.". Updated Maximum Ratings (Removed "(per MIL-STD-883, Method 3015)"). Updated Electrical Characteristics (Removed the Note "See the last page of this specification for Group A subgroup testing information." and its reference in Parameter column.). Updated Capacitance[10] (Changed maximum value of $\mathrm{C}_{\mathbb{I N}}$ parameter from 10 pF to 15 pF). Updated AC Test Loads and Waveforms. Updated Switching Characteristics (Removed the Note "See the last page of this specification for Group A subgroup testing information." and its reference in Parameter column.). Updated Switching Characteristics (Changed the minimum value of $\mathrm{t}_{\mathrm{OHA}}$ from 0 ns to 3 ns). Removed the section "Typical DC and AC Characteristics". Removed the section "Reference Documents".
*D	3620277	ADMU	06/15/2012	Added footnotes 9, 13, 17, 20, 36, 37, 39, 40, 41, and 42. Missing overbars updated. Removed "Slave Diagrams". Updated Figure 3 with value 5 ns. Updated Maximum Ratings (updated Static discharge voltage from 2001 V to 1100 V). Corrected the typo in Electrical Characteristics. Updated Package Diagrams (51-85042 from Rev *C to *D). Updated I ${ }_{\text {CC }}$ parameters in Electrical Characteristics table. Updated Typical Operating Current parameters in Selection Guide.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting \& Power Control	cypress.com/go/powerpsoc
cypress.com/go/plc	
Memory	cypress.com/go/memory
Optical \& Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

© Cypress Semiconductor Corporation, 2010-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :
5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB CYDM128B16-55BVXIT GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2\#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN 515712X IS62WV51216EBLL45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 59628971203XA 5962-8971202ZA

[^0]: Notes

 1. Unique location used by interrupt flag: $1 \mathrm{~K} \times 8$: Left port reads from 3FE, Right port reads from $3 F F$; $2 \mathrm{~K} \times 8$: Left port reads from 7 FE, Right port reads from 7 FF
 2. $\overline{B U S Y}$ is a push-pull output. No pull-up resistor required.
 3. $\overline{\mathrm{INT}}$: push-pull output. No pull-up resistor required.
 4. $1 \mathrm{~K} \times 8: A 0-A 9,2 \mathrm{~K} \times 8: \mathrm{A} 0-\mathrm{A} 10$, address lines are for both left and right ports.
[^1]: Notes
 6. The voltage on any I/O pin cannot exceed the power pin during power-up.
 7. At $f=f_{\text {MAX }}$, address and data inputs are cycling at the maximum frequency of read cycle of $1 / t_{R C}$ and using $A C$ Test Waveforms input levels of GND to 3 V .
 8. Pulse width < 20 ns .
 9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}\left(\right.$ typ.), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^2]: Notes
 11. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$, and 30 pF load capacitance.
 12. AC Test Conditions use $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=1.4 \mathrm{~V}$.
 13. This parameter is guaranteed but not tested.
 14. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$.
 15. Parameters LIZCE , $\mathrm{t}_{\text {LZWE }}, \mathrm{t}_{\text {HZOE }}, \mathrm{t}_{\text {LZOE }}, \mathrm{t}_{\text {HZCE }}$ and $\mathrm{t}_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (c) of Figure 3 on page 5 . Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
 16. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and R/ \bar{W} LOW. Both signals must be low to initiate a write and either signal can terminate

[^3]: Notes
 17. Test conditions used are Load 2.
 18. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state.
 19. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH
 Port B's address toggled
 $C E$ for Port B is toggled.

[^4]: Notes
 26. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH.
 Port B's address toggled
 CE for Port B is toggled.
 R / \bar{W} for Port B is toggled during valid read
 27. These parameters are measured from the input signal changing, until the output pin goes to a high impedance state

[^5]: Notes
 39. Parameter $\mathrm{t}_{\text {INS }}$ or $\mathrm{t}_{\text {INR }}$ depends on which enable pin ($\overline{\mathrm{CE}}_{\perp}$ or R / \bar{W}_{L}) is asserted last.
 40. Parameter $t_{H A}$ depends on which enable pin ($\overline{C E_{L}}$ or $\left.R / W_{L}\right)$ is deasserted first.

