Arbitrary Function Generators

Features \& Benefits

- $10 \mathrm{MHz}, 25 \mathrm{MHz}, 50 \mathrm{MHz}, 100 \mathrm{MHz}$, or 240 MHz Sine Waveforms
- 14 bits, $250 \mathrm{MS} / \mathrm{s}, 1 \mathrm{GS} / \mathrm{s}$, or $2 \mathrm{GS} / \mathrm{s}$ Arbitrary Waveforms
- Amplitude up to $20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ into 50Ω Loads
- 5.6 in. Color TFT LCD Display for Full Confidence in Settings and Waveform Shape
- Multilanguage and Intuitive Operation Saves Setup Time
- Pulse Waveform with Variable Edge Times
- AM, FM, PM, FSK, PWM
- Sweep and Burst
- Dual-channel Models Save Cost and Bench Space
- USB Connector on Front Panel for Waveform Storage on Memory Device
- USB, GPIB, and LAN
- LabVIEW and LabWindows/IVI-C Drivers

Applications

- Electronic Test and Design
- Sensor Simulation
- Functional Test
- Education and Training

Product Description

Unmatched performance, versatility, intuitive operation, and affordability make the AFG3000C Series of Function, Arbitrary Waveform, and Pulse Generators the most useful instruments in the industry.

Superior Performance and Versatility

Users can choose from 12 different standard waveforms. Arbitrary waveforms can be generated up to 128 K in length at high sampling rates. On pulse waveforms, leading and trailing edge time can be set independently. External signals can be connected and added to the output signal. Dual-channel models can generate two identical or completely different signals. All instruments feature a highly stable time base with only ± 1 ppm drift per year.

Intuitive User Interface Shows More Information at a Single Glance

Color TFT LCD screen on all models shows all relevant waveform parameters and graphical wave shape at a single glance. This gives full confidence in the signal settings and lets you focus on the task at hand. Shortcut keys provide direct access to frequently used functions and parameters. Others can be selected conveniently through clearly structured menus. This reduces the time needed for learning and relearning how to use the instrument. Look and feel are identical to the world's most popular TDS3000 Oscilloscopes.

ArbExpress ${ }^{\text {TM }}$ Software Included for Creating Waveforms with Ease

With this PC software waveforms can be seamlessly imported from any Tektronix oscilloscope, or defined by standard functions, equation editor, and waveform math.

Datasheet

Characteristics

AFG3000C Series Characteristics

Characteristic	AFG3011C	$\begin{aligned} & \text { AFG3021C } \\ & \text { AFG3022C } \end{aligned}$	$\begin{aligned} & \text { AFG3051C } \\ & \text { AFG3052C } \end{aligned}$	AFG3101C AFG3102C	$\begin{aligned} & \text { AFG3251C } \\ & \text { AFG3252C } \end{aligned}$
Channels	1	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
Waveforms	Sine, Square, Pulse, Ramp, Triangle, Sin(x)/x, Exponential Rise and Decay, Gaussian, Lorentz, Haversine, DC, Noise				
Sine Wave	$1 \mu \mathrm{~Hz}$ to 10 MHz	$1 \mu \mathrm{~Hz}$ to 25 MHz	$1 \mu \mathrm{~Hz}$ to 50 MHz	$1 \mu \mathrm{~Hz}$ to 100 MHz	$1 \mu \mathrm{~Hz}$ to 240 MHz
Sine wave in Burst Mode	$1 \mu \mathrm{~Hz}$ to 5 MHz	$1 \mu \mathrm{~Hz}$ to 12.5 MHz	$1 \mu \mathrm{~Hz}$ to 25 MHz	$1 \mu \mathrm{~Hz}$ to 50 MHz	$1 \mu \mathrm{~Hz}$ to 120 MHz
Effective maximum frequency out	10 MHz	25 MHz	50 MHz	100 MHz	240 MHz
Amplitude Flatness ($\mathrm{V}_{\text {p-p }}$)	$<5 \mathrm{MHz}: \pm 0.15 \mathrm{~dB}$ $\geq 5 \mathrm{MHz}$ to 10 MHz : $\pm 0.3 \mathrm{~dB}$	$\begin{gathered} <5 \mathrm{MHz}: \pm 0.15 \mathrm{~dB} \\ \geq 5 \mathrm{MHz} \text { to } 20 \mathrm{MHz}: \\ \pm 0.3 \mathrm{~dB} \\ \geq 20 \mathrm{MHz} \text { to } 25 \mathrm{MHz}: \\ \pm 0.5 \mathrm{~dB} \end{gathered}$	$\begin{gathered} <5 \mathrm{MHz}: \pm 0.15 \mathrm{~dB} \\ \geq 5 \mathrm{MHz} \text { to } 45 \mathrm{MHz}: \\ \pm 0.3 \mathrm{~dB} \\ \geq 45 \mathrm{MHz} \text { to } 50 \mathrm{MHz}: \\ \pm 0.5 \mathrm{~dB} \end{gathered}$	$<5 \mathrm{MHz}: \pm 0.15 \mathrm{~dB}$ $\geq 5 \mathrm{MHz}$ to 25 MHz : $\pm 0.3 \mathrm{~dB}$ $\geq 25 \mathrm{MHz}$ to 100 MHz : $\pm 0.5 \mathrm{~dB}$	$<5 \mathrm{MHz}: \pm 0.15 \mathrm{~dB}$ $\geq 5 \mathrm{MHz}$ to 25 MHz : $\pm 0.3 \mathrm{~dB}$ $\geq 25 \mathrm{MHz}$ to 100 MHz : $\pm 0.5 \mathrm{~dB}$ $\geq 100 \mathrm{MHz}$ to 200 MHz : $\pm 1.0 \mathrm{~dB}$ $\geq 200 \mathrm{MHz}$ to 240 MHz : $\pm 2.0 \mathrm{~dB}$
Harmonic Distortion ($1 \mathrm{~V}_{\text {p-p }}$)	10 Hz to 20 kHz : <-60 dBc $\geq 20 \mathrm{kHz}$ to 1 MHz : $-55 \mathrm{dBC}$ $\geq 1 \mathrm{MHz}$ to $5 \mathrm{MHz}:<$ $-45 \mathrm{dBC}$ $\geq 5 \mathrm{MHz}$ to 10 MHz : $<-45 \mathrm{dBC}$	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}:<-70 \mathrm{dBc} \\ \geq 20 \mathrm{kHz} \text { to } 1 \mathrm{MHz}:< \\ -60 \mathrm{dBc} \\ \geq 1 \mathrm{MHz} \text { to } 10 \mathrm{MHz}:< \\ -50 \mathrm{dBc} \\ \geq 10 \mathrm{MHz} \text { to } 25 \mathrm{MHz}: \\ <-40 \mathrm{dBc} \end{gathered}$	10 Hz to 20 kHz : <-70 dBc $\geq 20 \mathrm{kHz}$ to 1 MHz : $-60 \mathrm{dBc}$ $\geq 1 \mathrm{MHz}$ to $5 \mathrm{MHz}:<$ $-50 \mathrm{dBC}$ $\geq 5 \mathrm{MHz}$ to 50 MHz : $<-40 \mathrm{dBC}$	```10 Hz to 1 MHz: <-60 dBc \geq1 MHz to 5MHz:< -50 dBc \geq5 MHz to 100 MHz: <-37 dBc```	10 Hz to 1 MHz : -60 dBc $\geq 1 \mathrm{MHz}$ to 5 MHz : $-50 \mathrm{dBC}$ $\geq 5 \mathrm{MHz}$ to 25 MHz : < $-37 \mathrm{dBC}$ $\geq 25 \mathrm{MHz}$ to 240 MHz : $<-30 \mathrm{dBC}$
THD	$<0.2 \%$ ($10 \mathrm{~Hz}-20 \mathrm{kHz}, 1 \mathrm{~V}_{\mathrm{p} \cdot}$)				
Spurious ($\mathrm{V}_{\text {p-p }}$)	10 Hz to $1 \mathrm{MHz}:<-60 \mathrm{dBc}$ $\geq 1 \mathrm{MHz}$ to 10 MHz : $<-50 \mathrm{dBC}$	10 Hz to 1 MHz < -60 dBc $\geq 1 \mathrm{MHz}$ to 25 MHz : $<-50 \mathrm{dBC}$	10 Hz to 1 MHz : <-60 dBc $\geq 1 \mathrm{MHz}$ to 50 MHz : $<-50 \mathrm{dBc}$	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}:<-60 \mathrm{dBc} \\ \geq 1 \mathrm{MHz} \text { to } 25 \mathrm{MHz}: \\ <-50 \mathrm{dBc} \\ \geq 25 \mathrm{MHz} \text { to } 100 \mathrm{MHz} \\ <-50 \mathrm{dBc}+6 \mathrm{dBc} / \text { octave } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}:<-50 \mathrm{dBC} \\ \geq 1 \mathrm{MHz} \text { to } 25 \mathrm{MHz}: \\ <-47 \mathrm{dBc} \\ \geq 25 \mathrm{MHz} \text { to } 240 \mathrm{MHz}: \\ <-47 \mathrm{dBc}+6 \mathrm{dBc} \text { octave } \end{gathered}$
Phase noise, typical	$<-110 \mathrm{dBc} / \mathrm{Hz}$ at 10 MHz , 10 kHz offset, $1 \mathrm{~V}_{\text {p-p }}$	$<-110 \mathrm{dBc} / \mathrm{Hz}$ at $20 \mathrm{MHz}, 10 \mathrm{kHz}$ offset, $1 \mathrm{~V}_{\text {p-p }}$			
Residual clock noise	-63 dBm	-63 dBm	-63 dBm	-57 dBm	-57 dBm
Square Wave	$1 \mu \mathrm{~Hz}$ to 5 MHz	$1 \mu \mathrm{~Hz}$ to 25 MHz	$1 \mu \mathrm{~Hz}$ to 40 MHz	$1 \mu \mathrm{~Hz}$ to 50 MHz	$1 \mu \mathrm{~Hz}$ to 120 MHz
Rise/Fall time	$\leq 50 \mathrm{~ns}$	$\leq 9 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	≤ 2.5 ns
Jitter (RMS), typical	500 ps	500 ps	300 ps	200 ps	100 ps
Ramp Wave	$1 \mu \mathrm{~Hz}$ to 100 kHz	$1 \mu \mathrm{~Hz}$ to 500 kHz	$1 \mu \mathrm{~Hz}$ to 800 kHz	$1 \mu \mathrm{~Hz}$ to 1 MHz	$1 \mu \mathrm{~Hz}$ to 2.4 MHz
Linearity, typical	$\leq 0.2 \%$ of peak output	$\leq 0.1 \%$ of peak output	$\leq 0.1 \%$ of peak output	$\leq 0.15 \%$ of peak output	$\leq 0.2 \%$ of peak output
Symmetry	0.0\% to 100.0\%				
Pulse Wave	1 mHz to 5 MHz	1 mHz to 25 MHz	1 mHz to 40 MHz	1 mHz to 50 MHz	1 mHz to 120 MHz
Pulse width	80.00 ns to 999.99 s	16.00 ns to 999.99 s	12 ns to 999.99 s	8.00 ns to 999.99 s	4.00 ns to 999.99 s
Resolution	10 ps or 5 digits				
Pulse duty	0.001\% to 99.999\% (Limitations of pulse width apply)				
Edge transition time	50 ns to 625 s	9 ns to 625 s	7 ns to 625 s	5 ns to 625 s	2.5 ns to 625 s
Resolution	10 ps or 4 digits				
Lead delay					
Range	(Continuous Mode): 0 ps to Period(Triggered/Gated Burst Mode): 0 ps to Period - [Pulse Width +0.8 * (Leading Edge Time + Trailing Edge Time)]				
Resolution	10 ps or 8 digits				
Overshoot, typical	<5\%				
Jitter (RMS), typical	500 ps	500 ps	300 ps	200 ps	100 ps

Characteristic	AFG3011C	$\begin{aligned} & \text { AFG3021C } \\ & \text { AFG3022C } \end{aligned}$	$\begin{aligned} & \text { AFG3051C } \\ & \text { AFG3052C } \end{aligned}$	$\begin{aligned} & \text { AFG3101C } \\ & \text { AFG3102C } \end{aligned}$	$\begin{aligned} & \text { AFG3251C } \\ & \text { AFG3252C } \end{aligned}$
Other Waveforms	$1 \mu \mathrm{~Hz}$ to 100 kHz	$1 \mu \mathrm{~Hz}$ to 500 kHz	$1 \mu \mathrm{~Hz}$ to 800 kHz	$1 \mu \mathrm{~Hz}$ to 1 MHz	$1 \mu \mathrm{~Hz}$ to 2.4 MHz
Noise Bandwidth (-3 dB)	10 MHz	25 MHz	50 MHz	100 MHz	240 MHz
Noise type	White Gaussian				
Internal Noise Add	When activated, output signal amplitude is reduced to 50\%				
Level	0.0\% to 50\% of amplitude ($\mathrm{V}_{\text {p-p }}$) setting				
Resolution	1\%				
DC (into 50Ω)	-10 V to +10 V	-5 V to +5 V	-5 V to +5 V	-5 V to +5 V	-2.5 V to +2.5 V
Arbitrary Waveforms	1 mHz to 5 MHz	1 mHz to 12.5 MHz	1 mHz to 25 MHz	1 mHz to 50 MHz	1 mHz to 120 MHz
Arbitrary waveforms in Burst Mode	1 mHz to 2.5 MHz	1 mHz to 6.25 MHz	1 mHz to 12.5 MHz	1 mHz to 25 MHz	1 mHz to 60 MHz
Effective analog bandwidth (-3 dB)	8 MHz			100 MHz	225 MHz
Nonvolatile memory	4 waveforms				
Memory: Sample rate ($1 \mathrm{~K}=1024$ points)	2 to $128 \mathrm{~K}: 250 \mathrm{MS} / \mathrm{s}$	2 to $128 \mathrm{~K}: 250 \mathrm{MS} / \mathrm{s}$	$\begin{gathered} 2 \text { to } 16 \mathrm{~K}: 1 \mathrm{GS} / \mathrm{s} \\ >16 \mathrm{~K} \text { to } 128 \mathrm{~K}: 250 \mathrm{MS} / \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 2 \text { to } 16 \mathrm{~K}: 1 \mathrm{GS} / \mathrm{s} \\ >16 \mathrm{~K} \text { to } 128 \mathrm{~K}: 250 \mathrm{MS} / \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 2 \text { to } 16 \mathrm{~K}: 2 \mathrm{GS} / \mathrm{s} \\ >16 \mathrm{~K} \text { to } 128 \mathrm{~K}: 250 \mathrm{MS} / \mathrm{s} \end{gathered}$
Vertical resolution	14 bits				
Rise/Fall time	$\leq 80 \mathrm{~ns}$	$\leq 14 \mathrm{~ns}$	$\leq 10 \mathrm{~ns}$	$\leq 8 \mathrm{~ns}$	$\leq 3 \mathrm{~ns}$
Jitter (RMS), typical	4 ns	4 ns	1 ns at $1 \mathrm{GS} / \mathrm{s}$ 4 ns at $250 \mathrm{MS} / \mathrm{s}$	1 ns at $1 \mathrm{GS} / \mathrm{s}$ 4 ns at $250 \mathrm{MS} / \mathrm{s}$	500 ps at $2 \mathrm{GS} / \mathrm{s}$ 4 ns at $250 \mathrm{MS} / \mathrm{s}$
Amplitude					
Range (50Ω load)	$20 \mathrm{mV}_{\text {p-p }}$ to $20 \mathrm{~V}_{p-p}$	$10 \mathrm{mV} \mathrm{p}_{\text {-p }}$ to $10 \mathrm{~V}_{p-p}$	$10 \mathrm{mV} \mathrm{p}_{\text {-p }}$ to $10 \mathrm{~V}_{p-p}$	$20 \mathrm{mV} \mathrm{p}_{\text {pp }}$ to $10 \mathrm{~V}_{p-p}$	$\begin{aligned} & \leq 200 \mathrm{MHz}: 50 \mathrm{mV} \mathrm{~V}_{\text {p-p }} \\ & \text { to } 5 \mathrm{~V}_{\text {p-p }} \\ & >200 \mathrm{MHz}: 50 \mathrm{mV}_{p-p} \\ & \text { to } 4 \mathrm{~V}_{\text {p-p }} \end{aligned}$
Range (open circuit or High Z)	$40 \mathrm{mV} \mathrm{p}_{\text {pp }}$ to $40 \mathrm{~V}_{p-p}$	$20 \mathrm{mV} \mathrm{p}_{\text {-p }}$ to $20 \mathrm{~V}_{p-p}$	$20 \mathrm{mV} \mathrm{p}_{\text {pp }}$ to $20 \mathrm{~V}_{p-p}$	40 mV p-p to $20 \mathrm{~V}_{p-p}$	$\begin{aligned} & \leq 200 \mathrm{MHz}: 100 \mathrm{mV}_{p-p} \\ & \text { to } 10 \mathrm{~V}_{p-p} \\ & >200 \mathrm{MHz}: 100 \mathrm{mV}_{p-p} \\ & \text { to } 8 \mathrm{~V}_{p-p} \end{aligned}$
Accuracy	$\pm(2 \%$ of setting +2 mV) (1 kHz sine wave, 0 V offset, $>20 \mathrm{mV}_{\text {p-p }}$ amplitude)	$\pm(1 \%$ of setting $+1 \mathrm{mV})\left(1 \mathrm{kHz}\right.$ sine wave, 0 V offset, $>10 \mathrm{mV} \mathrm{p}_{\mathrm{p} \text {, }}$ amplitude $)$			
Resolution	$0.1 \mathrm{mV}_{\text {p-p }}, 0.1 \mathrm{mV}_{\mathrm{RMS}}, 1 \mathrm{mV}, 0.1 \mathrm{dBm}$ or 4 digits				
Units	$\mathrm{V}_{\text {p-p }}, \mathrm{V}_{\text {RMS }}, \mathrm{dBm}$ (sine wave only) and Volt (high/low setting)				
Output impedance	50Ω				
Load impedance setting	Selectable: $50 \Omega, 1 \Omega$ to $10.0 \mathrm{k} \Omega$, High Z (Adjusts displayed amplitude according to selected load impedance)				
Isolation	$<42 \mathrm{~V}_{\mathrm{pk}}$ maximum to earth				
Short-circuit protection	Signal outputs are robust against permanent shorts against floating ground				
External voltage protection	To protect signal outputs against external voltages use fuse adapter 013-0345-xx				
DC Offset					
Range (50Ω load)	$\pm\left(10 \mathrm{~V}_{\mathrm{pk}}-\right.$ Amplitude $\left._{\mathrm{pp}} / 2\right)$	$\pm\left(5 \mathrm{~V}_{\mathrm{pk}}-\right.$ Amplitude $\left._{\text {pp }} / 2\right)$	$\pm\left(5 \mathrm{~V}_{\mathrm{pk}}-\right.$ Amplitude $\left._{\text {pp }} / 2\right)$	$\pm 5 \mathrm{~V}_{\mathrm{pk}} \mathrm{DC}$	$\pm 2.5 \mathrm{~V}_{\mathrm{pk}}$ DC
Range (open circuit or High Z)	$\pm\left(20 \mathrm{~V}_{\mathrm{pk}}-\right.$ Amplitude $\left._{\text {pp }} / 2\right)$	$\pm\left(10 \mathrm{~V}_{\mathrm{pk}}-\right.$ Amplitude $\left._{\text {pp }} / 2\right)$	$\pm\left(10 \mathrm{~V}_{\mathrm{pk}}-\right.$ Amplitude $\left._{\text {pp }} / 2\right)$	$\pm 10 \mathrm{~V}_{\mathrm{pk}} \mathrm{DC}$	$\pm 5 \mathrm{~V}_{\mathrm{pk}}$ DC
Accuracy	$\pm(2 \%$ of \mid setting $\mid+10 \mathrm{mV}+$ 1% of amplitude $\left(\mathrm{V}_{\text {p-p }}\right)$)	$\pm\left(1 \%\right.$ of \mid setting $\mid+5 \mathrm{mV}+0.5 \%$ of amplitude $\left(\mathrm{V}_{\mathrm{p}-\mathrm{p}}\right)$)			
Resolution	1 mV				

System Characteristics

Characteristic Description				
Frequency Resolution	$1 \mu \mathrm{~Hz}$ or 12 digits			
Internal Frequency Reference				
Stability	All except ARB: $\pm 1 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ARB: $\pm 1 \mathrm{ppm} \pm 1 \mu \mathrm{~Hz}, 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$			
Aging	$\pm 1 \mathrm{ppm}$ per year			
Phase (except DC, Noise, Pulse)				
Range	-180° to $+180^{\circ}$			
Resolution	0.01° (sine), 0.1° (other waveforms)			
When activated, output signal amplitude is reduced to 50%				
Level	0.0% to 50% of amplitude ($\mathrm{V}_{\text {p.p }}$) setting			
Resolution	1\%			
Main Output	50Ω			
Remote Programming	GPIB, LAN 10BASE-T / 100BASE-TX, USB 1.1 Compatible with SCPI-1999.0 and IEEE 488-2 standards			
Configuration times, max typical	USB	LAN		IB
Function change	81 ms	81 ms		ms
Frequency change (except Pulse)	2.5 ms	6 ms		ms
Frequency change (Pulse)	40 ms	37 ms		ms
Amplitude change	90 ms	97 ms		ms
Select user ARB (4k points from USB Memory)	48 ms	50 ms		ms
Select user ARB (128 k points from USB Memory)	260 ms	266 ms		ms
Data download time for 4000 point waveform data, typical	47 ms	78 ms		ms
Power Source $\quad 100-240 \mathrm{~V}, 47-63 \mathrm{~Hz}$, or $115 \mathrm{~V}, 360-440 \mathrm{~Hz}$				
Power Consumption	Less than 120 W			
Warm-up Time, typical	20 minutes			
Power-on Self Diagnostics, typical	$<10 \mathrm{~s}$			
Acoustic Noise, typical	$<50 \mathrm{dBA}$			
Display	5.6 in. Color TFT LCD			
User Interface and Help Languages	English, French, German, Japanese, Korean, Portuguese, Simplified and Traditional Chinese, Russian (user selectable)			
Modulation		Pulse Width Modulation		
AM, FM, PM		Characteristic Description		
Characteristic Description		Carrier Waveform	Pulse	
Carrier Waveforms All, except Pulse, Noise, and DC		Source	/External	
Source Internal/External		Internal Modulating Waveform	Sine, square, ramp, noise, ARB (maximum waveform length 2,048)	
Internal Modulating Sine, square, ramp, noise, ARB (AM: maximum waveform length 4,096; FM/PM: maximum waveform length 2,048)		Internal Modulating Frequency	2 mHz to 50.00 kHz	
Internal Modulating 2 mHz to 50.00 kHz Frequency	2 mHz to 50.00 kHz	Deviation	50.0\% of pulse par	
AM Modulation Depth 0.0% to $+120.0 \%$				
Min FM Peak Deviation DC				
Max FM Peak See following table, Modulation: Max FM Peak DeviationDeviation				
PM Phase Deviation -360.0° to $+360.0^{\circ}$				
Modulation: Max FM Peak Deviation				
Characteristic AFG3	011CAFG3021C AFG3022C	$\begin{aligned} & \text { AFG3051C } \\ & \text { AFG3052C } \end{aligned}$	$\begin{aligned} & \text { AFG3101C } \\ & \text { AFG3102C } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AFG3251C } \\ & \text { AFG3252C } \end{aligned}$
Sine 5	MHz 12.5 MHz	25 MHz	50 MHz	120 MHz
Square 2.5	MHz $\quad 12.5 \mathrm{MHz}$	20 MHz	25 MHz	60 MHz
ARB 2.5	MHz 6.25 MHz	12.5 MHz	25 MHz	60 MHz
Others 50	kHz 250 kHz	400 kHz	500 kHz	1.2 MHz

Sweep: Max Start/Stop Frequency

Characteristic	AFG3011C	AFG3021C AFG3022C	AFG3051C AFG3052C	AFG3101C AFG3102C	AFG3251C AFG3252C
Sine	10 MHz	25 MHz	50 MHz	100 MHz	240 MHz
Square	5 MHz	25 MHz	40 MHz	50 MHz	120 MHz
ARB	5 MHz	12.5 MHz	25 MHz	50 MHz	120 MHz
Others	100 kHz	500 kHz	800 kHz	1 MHz	2.4 MHz

Frequency Shift Keying

Characteristic	Description
Carrier Waveforms	All, except Pulse, Noise, and DC
Source	Internal/External
Internal Modulating Frequency	2 mHz to 1.000 MHz
Number of Keys	2
Sweep	
Characteristic Description Waveforms All, except Pulse, Noise, and DC Type Linear, logarithmic Sweep Time 1 ms to 300 s Hold/Return Time 0 ms to 300 s Max Total Sweep Time 300 s Resolution 1 ms or 4 digits Total Sweep Time $\leq 0.4 \%$ Accuracy, typical Min Start/StopAll except ARB: $1 \mu \mathrm{~Hz}$ Frequency Max Start/Stop Frequency	See chart, below

Burst

Characteristic	Description
Waveforms	All, except Noise and DC
Type	Triggered, gated (1 to 1,000,000 cycles or Infinite)
Internal Trigger Rate	$1 \mu \mathrm{~s}$ to 500.0 s
Gate and Trigger Sources	Internal, external, remote interface

Auxiliary Inputs
Characteristic Description

Modulation Inputs Channel 1, Channel 2	
Input range	All except FSK: $\pm 1 \mathrm{~V}$ FSK: 3.3 V logic level
Impedance	$10 \mathrm{k} \Omega$
Frequency range	DC to $25 \mathrm{kHz}(122 \mathrm{kS} / \mathrm{s})$
External Triggered/Gated Burst Input	
Level	TTL compatible
Impedance	$10 \mathrm{k} \Omega$
Pulse width	100 ns minimum
Slope	Positive/Negative, selectable
Trigger delay	0.0 ns to 85.000 s
Resolution	100 ps or 5 digits
Jitter (RMS), typical	Burst: <500 ps (Trigger input to signal output)
10 MHz Reference Input	
Impedance	$1 \mathrm{k} \Omega$, AC coupled
Required Input Voltage Swing	$100 \mathrm{mV}_{\text {p-p }}$ to $5 \mathrm{~V}_{\text {p-p }}$
Lock Range	$10 \mathrm{MHz} \pm 35 \mathrm{kHz}$
External Add Input (CH1)	AFG3101C, AFG3102C, AFG3251C, AFG3252C only
Impedance	50Ω
Input range	-1 V to +1 V (DC + peak AC)
Bandwidth	DC to $10 \mathrm{MHz}(-3 \mathrm{~dB})$ at $1 \mathrm{~V}_{\mathrm{p} \text { - }}$

Auxiliary Outputs

Characteristic Description

Trigger Output (Channel 1)	
Level	Positive TTL level pulse into $1 \mathrm{k} \Omega$
Impedance	50Ω
Jitter (RMS), typical	$\begin{aligned} & \text { AFG3011C/21C/22C: } 500 \mathrm{ps} \\ & \text { AFG3051C/52C: } 300 \mathrm{ps} \\ & \text { AFG3101C/02C: } 200 \mathrm{ps} \\ & \text { AFG3251C/52C: } 100 \mathrm{ps} \\ & \hline \end{aligned}$
Max Frequency	4.9 MHz (4.9 MHz to 50 MHz : A fraction of the frequency is output; $>50 \mathrm{MHz}$: no signal is output)
Clock Reference Out (10 MHz)	AFG3101C, AFG3102C, AFG3251C, AFG3252C only
Impedance	50Ω, AC coupled
Amplitude	$1.2 \mathrm{~V}_{\text {p-p }}$ into 50Ω load

Physical Characteristics

Benchtop Configuration

Dimensions	$\mathbf{m m}$	$\mathbf{i n .}$
Height	156.3	6.2
Width	329.6	13.0
Depth	168.0	6.6
Weight	$\mathbf{k g}$	$\mathbf{l b}$.
Net	4.5	9.9
Shipping	5.9	12.9

Environmental and Safety Characteristics

Characteristic	Description
Temperature	
Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Nonoperating	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity	
Operating	$\begin{aligned} & \leq+40^{\circ} \mathrm{C}: \leq 80 \% \\ & >+40^{\circ} \mathrm{C} \text { to } 50{ }^{\circ} \mathrm{C}: \leq 60 \% \\ & \hline \end{aligned}$
Altitude	Up to 10,000 ft./3,000 m
EMC Compliance	
European Union	EU Council Directive 2004/108/EC
Safety	UL 61010-1:2004 CAN/CSA C22.2 No. 61010-1:2004 IEC 61010-1:2001

BNC Fuse Adapter and 0.125 A Fuse

Ordering Information

AFG3011C, AFG3021C, AFG3022C, AFG3051C, AFG3052C, AFG3101C, AFG3102C, AFG3251C, AFG3252C'
Arbitrary Function Generator
Includes: Quick-start user manual, power cord, USB cable, CD-ROM with specifications and performance verification manual, programmer manual, service manual, LabView and IVI drivers, CD-ROM with ArbExpress ${ }^{\text {TM }}$ software, and NIST-traceable calibration certificate. Please specify power plug when ordering.

International Power Plugs

Option	Description
Opt. A0	North America power
Opt. A1	Universal EURO power
Opt. A2	United Kingdom power
Opt. A3	Australia power
Opt. A5	Switzerland power
Opt. A6	Japan power
Opt. A10	China power
Opt. A11	India power
Opt. A12	Brazil power
Opt. A99	No power cord or AC adapter

Note: Includes front-panel overlay.

Manual Options

Option	Description
Opt. L0	English (071-1631-xx)
Opt. L1	French (071-1632-xx)
Opt. L2	Italian (071-1669-xx)
Opt. L3	German (071-1633-xx)
Opt. L4	Spanish (071-1670-xx)
Opt. L5	Japanese (071-1634-xx)
Opt. L6	Portuguese (071-3042-xx)
Opt. L7	Simple Chinese (071-1635-xx)
Opt. L8	Traditional Chinese (071-1636-xx)
Opt. L9	Korean (071-1637-xx)
Opt. L10	Russian (071-1638-xx)
Opt. L99	No manual

Service

Option	Description
Opt. C3	Calibration Service 3 Years
Opt. C5	Calibration Service 5 Years
Opt. D1	Calibration Data Report
Opt. D3	Calibration Data Report 3 Years (with Opt. C3)
Opt. D5	Calibration Data Report 5 Years (with Opt. C5)
Opt. R5	Standard Warranty Extended to 5 Years
Opt. R5DW	Repair Service Coverage 5 Years
Opt. SLLV200	Standard Warranty Extended to 5 Years (AFG3011C, AFG3021C, AFG3022C, AFG3101C, and AFG3102C)
Opt. SILV400	Standard Warranty Extended to 5 Years (AFG3251C and AFG3252C)

Warranty

Three-year warranty on parts and labor.

Recommended Accessories

Accessory	Description
Rackmount Kit	RM3100
Fuse adapter, BNC-P to BNC-R	013-0345-xx
$\begin{aligned} & \text { Fuse set, } 3 \mathrm{pcs}, \\ & 0.125 \mathrm{~A} . \end{aligned}$	159-0454-xx
BNC cable shielded, $3 \mathrm{ft} .$	012-0482-xx
BNC cable shielded, 9 ft .	012-1256-xx
GPIB cable, double shielded	012-0991-xx
50Ω BNC terminator	011-0049-02

C ϵ

(SRI)
(SRi)
GPIB
Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.
Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com

Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Function Generators \& Synthesizers category:
Click to view products by Tektronix manufacturer:

Other Similar products are found below :
UC1901J883B 30013003 CT3733 CT3735 CT3734 4011A 33511B/903 SFG-210 33512B/903 SFG-205 4013B 403040104040 2005B 4003A 4005DDS 4007B 4012A 4014B 4017A 4040A 4040B 4053B 4054B 4055B $40644065 \underline{T L F G} \underline{\text { AFG1022 AFG1062 AFG3102C }}$

