MOS FET Relays

G3VM-41LR5

World's Smallest SSOP Package MOS FET Relay* with Low Output Capacitance and ON Resistance ($C \times R=10 \mathrm{pF} \bullet \Omega$) in a 40-V Load Voltage Model

- ON resistance of 1Ω (typical) suppresses output signal attenuation.
- RoHS Compliant.
*Information correct as of May 2007, according to data obtained by OMRON.

Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers

Note: The actual product is marked differently from the image shown

- Broadband systems here.

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
SPST-NO	Surface-mounting terminals	40 VAC	G3VM-41LR5	---
			G3VM-41LR5(TR)	1,500
		G3VM-41LR5(TR05)	500	
		G3VM-41LR5(TR10)	1,000	

Dimensions

Note: All units are in millimeters unless otherwise indicated.
G3VM-41LR5

Note: The actual product is marked differently from the image shown here.

Note: A tolerance of $\pm 0.1 \mathrm{~mm}$ applies to all dimensions unless otherwise specified.

Weight: 0.03 g

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-41LR5

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

 G3VM-41LR5

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I_{F}	50	mA	
	Repetitive peak LED forward current	I_{FP}	1	A	$100 \mu \mathrm{~s}$ pulses, 100 pps
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Load voltage (AC peak/DC)	$\mathrm{V}_{\text {OFF }}$	40	V	
	Continuous load current	I_{0}	300	mA	
	ON current reduction rate	$\triangle \mathrm{ION}^{\prime}{ }^{\circ} \mathrm{C}$	-3.0	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)		$\mathrm{V}_{1-\mathrm{O}}$	1,500	$\mathrm{V}_{\text {rms }}$	AC for 1 min
Operating temperature		T_{a}	-20 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature (10 s)		---	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage beoutput was checked by applying voltage be-
tween all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	15	---	pF	$V=0, f=1 \mathrm{MHz}$
	Trigger LED forward current	I_{FT}	---	---	4	mA	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$
Output	Maximum resistance with output ON	$\mathrm{R}_{\text {ON }}$	---	1.0	1.5	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms} \end{aligned}$
	Current leakage when the relay is open	$\mathrm{I}_{\text {LEAK }}$	---	0.2	1.0	nA	$\mathrm{V}_{\text {OFF }}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$
	Capacity between terminals	$\mathrm{C}_{\text {OFF }}$	---	10	14	pF	$\begin{aligned} & \mathrm{V}=0, \mathrm{f}=100 \mathrm{MHz}, \\ & \mathrm{t}<1 \mathrm{~s} \end{aligned}$
Capacity between I/O terminals		$\mathrm{C}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
Insulation resistance		$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$
Turn-ON time		t_{ON}	---	0.2	0.5	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time		$\mathrm{t}_{\text {OFF }}$	---	0.2	0.5	ms	

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	32	V
Operating LED forward current	I_{F}	10	---	30	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	300	mA
Operating temperature	T_{a}	25	---	60	${ }^{\circ} \mathrm{C}$

Continuous load current vs. On-state voltage

Turn ON, Turn OFF time vs.
LED forward current

Output terminal capacitance COFF/COFF(ov) vs. Load voltage Coff - Voff

Continuous load current vs.
Ambient temperature
Io - Ta

On-state resistance vs.
Ambient temperature
Ron - Ta

Turn ON, Turn OFF time vs.
Ambient temperature
ton, toff - Ta

LED forward current vs. LED forward voltage IF - VF

Trigger LED forward current vs. Ambient temperature

IfT - Ta

Current leakage vs. Load voltage

I LEAK - Voff

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28 G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV212AJ AQV238AD01 AQV252GAXJ AQW414TS AQY210SXT AQY212ST AQY221N2V1YJ AQY275AXJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M-203PL-UTU-1 DC24 CPC2330N 3-1617776-2 CTA2425 TS190 LBB110S

