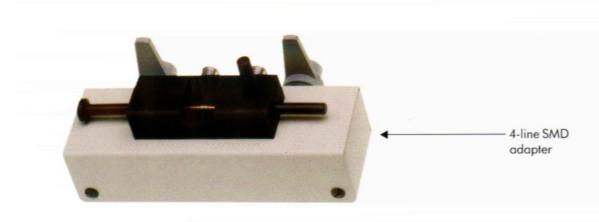
RLC 200 RLC Meter

digimess[®] expert

Order No.: H.UC 30-00

The RLC 200, an automatic RLC meter, is designed for the manual or fully automatic measurement of components.

Full remote control is possible via an RS-232 interface.


All the usual component parameters such as resistance, conductance, inductance, capacitance, Q factor and loss factor can be determined with a basic accuracy of 0.2%. Deviations from the reference components can be represented either absolutely or relatively.

The information is displayed on a large, backlit alphanumeric LCD. In addition to parameter measurements, DC voltages up to 400 V can be measured with a resolution of 100 μ V.

The package includes extensive accessories including an adapter for radial and axial components, an adapter for SMD components and a 4-line measuring cable with Kelvin clips (see overleaf).

As you can see, the RLC 200 offers an unbeatable price/ performance ratio. cable with Kelvin clips,

r measoning carm coore.

4-line measuring cable with Kelvin clips Voltage measuring cable with built-in test probes

Impedance [7]		Measuring frequency		
	Impedance Z		100 Hz	1 kHz
100 mΩ	≤ Z <	2Ω	not specified	\pm 0.8% \pm 3 dig
2Ω	$\leq Z <$	20 Ω	± 0.5% ± 3 dig	$\pm 0.5\% \pm 2 dig$
20 Ω	$\leq Z <$	200 Ω	± 0.3% ± 3 dig	\pm 0.3% \pm 2 dig
200 Ω	$\leq Z <$	2kΩ	± 0.3% ± 3 dig	\pm 0.3% \pm 2 dig
2kΩ	$\leq Z <$	20 kΩ	± 0.3% ± 3 dig	\pm 0.3% \pm 2 dig
20 kΩ	$\leq Z <$	500 kΩ	± 0.3% ± 3 dig	\pm 0.3% \pm 2 dig
500 kΩ	$\leq Z <$	5 MΩ	± 0.5% ± 5 dig	\pm 0.5% \pm 3 dig
5MΩ	$\leq Z <$	20 MΩ	not specified	± 3.0% ± 3 dig

Where impedance $|Z| \ge 20 \text{ M}\Omega \text{ (0 < G \le 50 nS)}$, $U_{meas} = 50 \text{ mV}$. The measurement tolerance is specified using the conductance deviation G = \pm 3 nS for the measuring frequency 1 kHz. Where impedance $|Z| < 100 \text{ m}\Omega \text{ (}0 < R < 100 \text{ m}\Omega\text{)}$, $U_{meas} = 50 \text{ mV}$. The measurement tolerance is specified using the resistance deviation $R = \pm 3 \text{ m}\Omega$ for the measuring frequency 1 kHz.

All percentages refer to the displayed measured values.

Measurement tolerance of loss factor D

The measuring tolerance T_{meas} of loss factor of capacitances D can be calculated using the equation:

$$T_{meas} = 0.1 D_m \pm D$$

D_m = measured value D (display ed D-value)

D = additional error

Additional error D where fmeas = 1 kHz

CC	Measuring voltage	
Capacitance C	50 V	1 V
10 pF ≤C< 100 pF	not specified	± 0.005
$100 pF \leq C < 10 nF$	± 0.005	± 0.005
$10 nF \leq C < 100 \mu F$	± 0.004	± 0.003
$100\mu\text{F} \leq C < 1\text{mF}$	± 0.010	± 0.005

Additional error D where fmeas = 100 Hz

Conscience C	Measuring voltage
Capacitance C	50 V 1 V
10 pF ≤C< 1 nF	not specified ± 0.005
1 nF ≤C< 10 nF	± 0.005 ± 0.005
$10 nF \leq C < 100 \mu F$	± 0.003 ± 0.003
$100 \mu F \leq C < 1 m F$	± 0.005 ± 0.003
1 mF ≤C< 10 mF	not specified ± 0.010

Measurement tolerances

The following measurement tolerances apply for a reference temperature of + 23 °C \pm 1 °C. In the case of defiations from

the reference temperature, the tolerance increases by 50% for every 10 °C.

Measurement tolerances for R and G (Q < 1, D > 1) and for L and C (Q > 1, D < 1)

The measurement tolerance T_{meas} is calculated using the following equation:

$$T_{meas} = \left[\pm \left(A \sqrt{1 + P_m^2} \right) \pm K \right] K_t$$

- A = basic accuracy in %
- P_m = parameter Q (for R-G-measurement) or parameter D (for L-C-measurement)
- K = additional error in the last digit (dig)
- Kt = temperature coefficient error

The following equations can be used to calculate impedance Z from R, G, C and L:

$$|Z| = R = 1/G$$
 $|Z| = 2 \pi fL \text{ and } |Z| = \frac{1}{2 \pi fC}$

Basic accuracy A + additional error K where U_{meas} = 1 V

ŀ	mpedance Z	Measuring frequency	
	npeddice 2	100 Hz	1 kHz
100 mΩ	$\leq Z < 2\Omega$	\pm 0.5% \pm 2 dig	± 0.5% ± 2 dig
2Ω	$\leq Z < 20 \Omega$	± 0.3% ± 2 dig	± 0.3% ± 1 dig
20 Ω	$\leq Z < 200 \Omega$	± 0.2% ± 2 dig	± 0.2% ± 1 dig
200 Ω	$\leq Z < 2 k\Omega$	± 0.2% ± 2 dig	± 0.2% ± 1 dig
2kΩ	$\leq Z < 20 k\Omega$	± 0.2% ± 2 dig	± 0.2% ± 1 dig
20 kΩ	$\leq Z < 500 k\Omega$	± 0.2% ± 2 dig	± 0.2% ± 1 dig
500 kΩ	$\leq Z < 5M\Omega$	± 0.3% ± 3 dig	± 0.3% ± 2 dig
5 MΩ	$\leq Z < 20 M\Omega$	$\pm 1\% \pm 5 dig$	± 1.0% ± 2 dig

Where impedance $|Z| \ge 20 \text{ M}\Omega \text{ (}0 < G \le 50 \text{ nS}\text{)}$, $U_{\text{meas}} = 1 \text{ V}$. The measurement tolerance is specified using the conductance deviation $G = \pm 2 \text{ nS}$ for both measuring frequencies. Where impedance $|Z| < 100 \text{ m}\Omega (0 < R < 100 \text{ m}\Omega)$, $U_{meas} = 50 \text{ mV}$. The measurement tolerance is specified using the resistance deviation $R = \pm 2 \text{ m}\Omega$ for both measuring frequencies.

All percentages refer to the displayed measured values.

Technical data

Measuring parameters and measurement ranges

Measuring parameter	Measurement range		Resolution/dig
nicusor ng parameter	from	to	Resolution/ dig
R	lmΩ -	- 100 MΩ	1 mΩ
G	1 nS -	- 10S	1 nS
С	0.1 pF -	- 20 mF	0.1 pF
L	0.1 μH -	- 20 kH	0.1 μH
D	0.001 -	- 2	0.001
Q	0.1	- 500	0.1
U=	0.1 mV -	- 400 V	0.1 mV
Δ%	-999% -	- +999%	0.1%

Measurement specifications

Measuring parameters	R, G, C, L, D, Q, U=, Δ/Δ%
Type of connection	Series or parallel connection with 4-pin arrangement of measuring terminal
Measuring frequencies	100 Hz, 1 kHz
Measuring voltage	50 mV, 1 V
Polarization of test object Internal voltage source External voltage source	+5 V ≤ +30 V
Selection of measurement range	Automatic or as fixed range
Input resistance of DC voltmeter	>9MQ
Triggering	internal, manual, external via RS 232 C
Measuring time	200 ms
Display	3 1/2 - digit (measured value and unit)
Interface	RS 232 C
Remote control functions:	R, G, C, L, D, Q, U=, automatic measuring parameter selection, measurement types, measuring frequencies, measuring voltages, automatic measurement range selection or fixed range, absolute and percentage deviation (Δ/Δ %) with input of reference value, triggering and acoustic short-circuit indicator
Data output	Measuring parameter, measurement type, measured value

Measurement tolerance of Q factor

The tolerance is \pm 0.2 in the impedance range 100 m $\Omega \leq |Z| <$ 20 M Ω for R or G as test object.

The measurement tolerance of the Q factor of inductances is calculated using the following equation: $T_{meas} = 0.1 Q_m \pm Q$ $Q_m = measured value Q \qquad Q = additional error (display ed Q-value)$

Additional error Q where fmeas = 1 kHz

Inductance L	Measuring voltage
inducidance L	50 mV 1 V
100 µH ≤L< 1 mH	± 0.5 ± 0.4
1 mH ≤L< 100 H	± 0.3 ± 0.3
100H ≤L< 1kH	± 1.5 ± 0.5
1kH ≤L< 2kH	not specified ± 0.5

Additional error Q where $f_{meas} = 100 \text{ Hz}$

Inductance L	Measuring voltage	
inducidance L	50 mV	1 V
1 mH ≤L< 10 mH	not specified	± 0.3
10 mH ≤L< 2 H	± 0.7	± 0.3

Measurement tolerance with DC voltage

In all measurement ranges, the measurement tolerance with DC voltage is: T_{meas} = 0.2% ± 1 dig.

The percentages refer to the displayed value. With a short-circuited input, the display may fluctuate by a maximum of \pm 0.2 mV.

The specified values apply for a reference temperature of 23 °C \pm 1 °C. In the case of deviations from the reference temperature, the tolerance increases by 50% for every 10 °C.

Environmental conditions	
Nominal temperature	+23°C±1°C
Operating temperature	+0°C+50°C
Relative atmospheric humidity	4080%
Atmospheric pressure	86 106 kPa
Interference suppression	VfG 243/1991
Power supply	
Operating voltage	Sinusoidal AC voltage 110/220 V (\pm 10%) (internally switchable) 50 60 Hz (\pm 5%)
Power consumption	16 VA
Fuses	T 80 mA/250 V (220 V~), T 160 mA/250 V (110 V~)
Protection class	I, in accordance with IEC 348, corresponds DIN VDE 0411 Part 1 E8 1
Dimensions (W \times H \times D)	291 mm × 108 mm × 259 mm
Dimensions of packing	338 mm × 138 mm × 408 mm
Weight	approx. 2.8 kg
Weight incl. packing and accessories	4.5 kg

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Soldering Irons category:

Click to view products by Digimess manufacturer:

Other Similar products are found below :

 0052918099
 918100-TE
 PTTC-802
 SFV-DRK30AR
 SMTC-0167
 SMTC-1121
 SMTC-1169-PK
 SMTC-588
 SMTC-8170
 AC-CK1
 AC

 CK2
 SSC-625A
 SSC-626A
 SSC-726A
 SSC-774A
 FG-BVX
 STV-CH24A
 PHT-753077
 PTK7-B
 RTW3MS
 SCP-CH25
 SMTC-101

 SMTC-113
 SMTC-160-PK
 SMTC-1BL250
 SSC-645A
 SSC-671A
 SSC-713A
 SSC-745A
 SSC-770A
 SSC-772A
 STTC-120

 STTC-513
 STTC-545
 STTC-547
 TATC-609
 T0054487399
 T0054474199
 T0054440899
 SMTC-004
 T0054441099

 T0054440699
 T0054440499
 PTTC-801B
 RPS-1
 SMTC-0124
 SCV-CH24A
 WMRPMS