HT9200A/HT9200B DTMF Generators

Features

- Operating voltage: $2.0 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Serial mode for the HT9200A
- Serial/parallel mode for the HT9200B
- Low standby current
- Low total harmonic distortion
- 3.58 MHz crystal or ceramic resonator
- HT9200A: 8-pin DIP/SOP package HT9200B: 14-pin SOP package

General Description

The HT9200A/B tone generators are designed for MCU interfaces. They can be instructed by a MCU to generate 16 dual tones and 8 single tones from the DTMF pin. The HT9200A provides a serial mode whereas the

HT9200B contains a selectable serial/parallel mode interface for various applications such as security systems, home automation, remote control through telephone lines, communication systems, etc.

Selection Table

Fart No.	Operating Voltage	OSC Frequency	Interface	Package
HT9200A	$2 \mathrm{~V} \sim 5.5 \mathrm{~V}$	3.58 MHz	Serial	$8 \mathrm{DIP} / \mathrm{SOP}$
HT9200B	$2 \mathrm{~V} \sim 5.5 \mathrm{~V}$	3.58 MHz	Serial/Parallel	14 SOP

Block Diagram

Pin Assignment

Pad Assignment

Pad Coordinates
Unit: $\mu \mathrm{m}$

Pad No.	\mathbf{X}	\mathbf{Y}	Pad No.	\mathbf{X}	\mathbf{Y}
1	-553.30	430.40	8	553.30	-523.50
2	-553.30	-133.50	9	553.30	-190.30
3	-553.30	-328.50	10	553.30	4.70
4	-553.30	-523.50	11	553.30	340.30
5	-220.10	-523.50	12	374.90	523.50
6	-25.10	-523.50	13	-279.30	523.50
7	308.10	-523.50			

Chip size: $1460 \times 1470(\mu \mathrm{~m})^{2}$

* The IC substrate should be connected to VSS in the PCB layout artwork.

Pin Description

Pin Name	I/O	Internal Connection	Description
$\overline{C E}$	I	CMOS IN Pull-high	Chip enable, active low
X2	0	Oscillator	The system oscillator consists of an inverter, a bias resistor, and the required load capacitor on chip. The oscillator function can be implemented by Connect a standard 3.579545 MHz crystal to the X1 and X2 terminals.
X1	I		
VSS	-	-	Negative power suppl, ground
NC	-	-	No connection
D0~D3	I	CMOS IN Pull-high or Floating	Data inputs for the parallel mode When the IC is operating in the serial mode, the data input terminals (D0~D3) are included with a pull-high resistor. When the IC is operating in the parallel mode, these pins become floating.
\bar{S} / P	I	CMOS IN	Operation mode selection input $\overline{\mathrm{S}} / \mathrm{P}={ }^{\prime \prime} \mathrm{H}^{\prime \prime}$: Parallel mode $\overline{\mathrm{S}} / \mathrm{P}={ }^{\prime} \mathrm{L}$ ": Serial mode
CLK	1	CMOS IN Pull-high or Floating	Data synchronous clock input for the serial mode When the IC is operating in the parallel mode, the input terminal (CLK) is included with a pull-high resistor. When the IC is operating in the serial mode, this pin becomes floating.

Pin Name	I/O	Internal Connection	Description
DATA	I	CMOS IN Pull-high or Floating	Data input terminal for the serial mode When the IC is operating in the parallel mode, the input terminal (DATA) is included with a pull-high resistor. When the IC is operating in the serial mode, this pin be- comes floating.
DTMF	O	CMOS OUT	Output terminal of the DTMF signal
VDD	-	-	Positive power supply, 2.0V~5.5V for normal operation

Approximate internal connection circuits

	CMOS IN (For D0~D3, CLK, DATA)	CMOS IN
OSCILLATOR		

Absolute Maximum Ratings

Supply Voltage -0.3 V to 6V	Storage Temperature $50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage	. $\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Operating Temperature....................... $20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		VDD	Conditions				
$V_{D D}$	Operating Voltage	-	-	2	-	5.5	V
IDD	Operating Current	2.5 V	$\begin{aligned} & \overline{\mathrm{S}} / \mathrm{P}=\mathrm{V}_{\mathrm{DD}}, \mathrm{DO} \sim \mathrm{D} 3=\mathrm{V}_{\mathrm{SS}}, \\ & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{SS}}, \text { No load } \end{aligned}$	-	240	2500	$\mu \mathrm{A}$
		5.0 V		-	950	3000	
VIL	"Low" Input Voltage	-	-	VSS	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	"High" Input Voltage	-	-	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
ІІтв	Standby Current	2.5 V	$\overline{\mathrm{S}} / \mathrm{P}=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{DD}}$, no load	-	-	1	$\mu \mathrm{A}$
		5.0 V		-	-	2	
R_{P}	Pull-high Resistance	2.5 V	$\mathrm{V}_{\mathrm{oL}}=0 \mathrm{~V}$	120	180	270	k Ω
		5.0 V		45	68	100	
t ${ }_{\text {DE }}$	DTMF Output Delay Time (Parallel Mode)	5 V	-	-	tup+6	tup+8	ms
$V_{\text {TDC }}$	DTMF Output DC Level	$\begin{array}{\|c\|} 2 \mathrm{~V} \sim \\ 5.5 \mathrm{~V} \end{array}$	DTMF Output	$0.45 \mathrm{~V}_{\text {DD }}$	-	$0.75 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{I}_{\text {TOL }}$	DTMF Sink Current	2.5 V	$V_{\text {DTMF }}=0.5 \mathrm{~V}$	-0.1	-	-	mA
$\mathrm{V}_{\text {TAC }}$	DTMF Output AC Level	2.5 V	Row group, $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	0.12	0.15	0.18	Vrms
$A_{\text {cr }}$	Column Pre-emphasis	2.5 V	Row group=0dB	1	2	3	dB
RL	DTMF Output Load	2.5 V	$\mathrm{t}_{\mathrm{HD}} \leq-23 \mathrm{~dB}$	5	-	-	k ת
t_{HD}	Tone Signal Distortion	2.5 V	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	-	-30	-23	dB
$\mathrm{f}_{\text {CLK }}$	Clock Input Rate (Serial Mode)	-	-	-	100	500	kHz
tup	Oscillator Starting Time (When $\overline{\mathrm{CE}}$ is low)	5.0 V	The time from $\overline{\mathrm{CE}}$ falling edge to normal oscillator operation	-	-	10	ms
fosc	System Frequency	-	Crystal $=3.5795 \mathrm{MHz}$	3.5759	3.5795	3.5831	MHz

Functional Description

The HT9200A/B are DTMF generators for MCU interfaces. They are controlled by a MCU in the serial mode or the parallel mode (for the HT9200B only).

Serial mode (HT9200A/B)

The HT9200A/B employ a data input, a 5-bit code, and a synchronous clock to transmit a DTMF signal. Every digit of a phone number to be transmitted is selected by a series of inputs which consist of 5 -bit data. Of the 5
bits, the $D 0(L S B)$ is the first received bit. The HT9200A/B will latch data on the falling edge of the clock (CLK pin). The relationship between the digital codes and the tone output frequency is shown in Table 1. As for the control timing diagram, refer to Figure 1.

When the system is operating in the serial mode a pull-high resistor is attached to D0~D3 (for parallel mode) on the input terminal.

Table 1: Digits vs. input data vs. tone output frequency (serial mode)

Digit	D4	D3	D2	D1	D0	Tone Output Frequency (Hz)
1	0	0	0	0	1	697+1209
2	0	0	0	1	0	697+1336
3	0	0	0	1	1	697+1477
4	0	0	1	0	0	$770+1209$
5	0	0	1	0	1	770+1336
6	0	0	1	1	0	770+1477
7	0	0	1	1	1	852+1209
8	0	1	0	0	0	852+1336
9	0	1	0	0	1	852+1477
0	0	1	0	1	0	941+1336
*	0	1	0	1	1	$941+1209$
\#	0	1	1	0	0	$941+1477$
A	0	1	1	0	1	697+1633
B	0	1	1	1	0	$770+1633$
C	0	1	1	1	1	852+1633
D	0	0	0	0	0	$941+1633$
-	1	0	0	0	0	697
-	1	0	0	0	1	770
-	1	0	0	1	0	852
-	1	0	0	1	1	941
-	1	0	1	0	0	1209
-	1	0	1	0	1	1336
-	1	0	1	1	0	1477
-	1	0	1	1	1	1633
DTMF OFF	1	1	1	1	1	-

Note: The codes not listed in Table 1 are not used D4 is MSB

For the HT9200B, the $\overline{\mathrm{S}} / \mathrm{P}$ pin has to be connected low for serial mode operation.

Parallel mode (HT9200B)

The HT9200B provides four data inputs D0~D3 to generate their corresponding DTMF signals. The $\overline{\mathrm{S}} / \mathrm{P}$ has to be connected high to select the parallel operation mode. Then the input data codes should be determined. Finally, the $\overline{\mathrm{CE}}$ is connected low to transmit the DTMF signal from the DTMF pin.

The $T_{D E}$ time (about 6 ms) will be delayed from the $\overline{\mathrm{CE}}$ falling edge to the DTMF signal output.
The relationship between the digital codes and the tone output frequency is illustrated in Table 2. As for the control timing diagram, see Figure 2.
When the system is operating in the parallel mode, D0~D3 are all in the floating state. Thus, these data input pins should not float.

Figure 1

Table 2: Digits vs. input data vs. tone output frequency (parallel mode)

Digit	D3	D2	D1	D0	Tone Output Frequency (Hz)
1	0	0	0	1	$697+1209$
2	0	0	1	0	$697+1336$
3	0	0	1	1	$697+1477$
4	0	1	0	0	$770+1209$
5	0	1	0	1	$770+1336$
6	0	1	1	0	$770+1477$
7	0	1	1	1	$852+1209$
8	1	0	0	0	$852+1336$
9	1	0	0	1	$852+1477$
0	1	0	1	0	$941+1336$
$*$	1	0	1	1	$941+1209$
$\#$	1	1	0	0	$941+1477$
A	1	1	0	1	$697+1633$
B	1	1	1	0	$770+1633$
C	1	1	1	1	$852+1633$
D	0	0	0	0	$941+1633$

Note: The data (D0~D3) should be ready before the CE becomes low.
Figure 2

Tone frequency

Output Frequency (Hz)		\%Error
Specified	Actual	
697	699	-0.52%
770	766	-0.59%
852	847	$+0.74 \%$
941	948	$+0.50 \%$
1209	1215	-0.30%
1336	1332	-0.34%
1477	1472	$+0.74 \%$
1633	1645	

\% Error does not contain the crystal frequency drift

Application Circuits

Serial Mode

Serial/Parallel Mode

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package information.
Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information
- PB FREE Products
- Green Packages Products

8-pin DIP (300 mil) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	0.355	-	0.375
B	0.240	-	0.260
C	0.125	-	0.135
D	0.125	-	0.145
E	0.016	-	0.020
F	0.050	-	0.070
G	-	0.100	-
H	0.295	-	0.315
I	-	0.375	-

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	9.02	-	9.53
B	6.10	-	6.60
C	3.18	-	3.43
D	3.18	-	3.68
E	0.41	-	0.51
F	1.27	-	1.78
G	-	2.54	-
I	7.49	-	8.00

8-pin SOP (150mil) Outline Dimensions

- MS-012

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	0.228	-	0.244
B	0.150	-	0.157
C	0.012	-	0.020
C $^{\prime}$	0.188	-	0.197
D	-	-	0.069
E	-	0.050	-
F	0.004	-	0.010
G	0.016	-	0.050
H	0.007	-	0.010
α	0°	-	8°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	5.79	-	6.20
B	3.81	-	3.99
C	0.30	-	0.51
C' $^{\prime}$	4.78	-	5.00
D	-	-	1.75
E	-	1.27	-
F	0.10	-	0.25
G	0.41	-	1.27
H	0.18	-	0.25
α	0°	-	8°

14-pin SOP (150mil) Outline Dimensions

- MS-012

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	0.228	-	0.244
B	0.150	-	0.157
C	0.012	-	0.020
C $^{\prime}$	0.337	-	0.344
D	-	-	0.069
E	-	-0.050	-
F	0.004	-	0.010
G	0.016	-	0.050
H	0.007	-	0.010
α	0°	-	8°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	5.79	-	6.20
B	3.81	-	3.99
C	0.30	-	0.51
C' $^{\prime}$	8.56	-	8.74
D	-	-	1.75
E	-	1.27	-
F	0.10	-	0.25
G	0.41	-	1.27
H	0.18	-	0.25
α	0°		8°

Copyright © 2013 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for holtek manufacturer:
Other Similar products are found below :
ht7560-1 BS813A-1 HT46R065B-16NSOP HT7730A HT7991 HT66F0176 HT46R47 HT46R065B HT7733B HT7612B HT66F30
HT7610A HT7333-1 BS83A04A-3 HT7344-3 HT42B534-1 HT24LC04(1.8V) HT48R002 HT48F06E HT46R004 HT6220A BS801B
HT7233 SOT-89 HT1380 HT46R066B HT1380A BS84C12A-3 HT1381A HT7350 ECC111423EU HT46R003B HT9274 HT48R06A-1 HT66F20 HT46R005 HT68F03T3 HT7540-2 HT9200B HT45F23A HT7963 HT7733 HT7465 BS814A-1 HT7150A-1-TO92LF HT7325A HT7550-1-SOT89TRLF HT48R005 HT7536-7 BS66V360 HT68F03C

