High Frequency Relay G6K-RF

Surface Mount, $1 \mathrm{GHz} / 3 \mathrm{GHz}$ Miniature DPDT, High Frequency Relay

- New Models with 3 GHz band available ("-T" versions)
- Space-saving 1 GHz version with smaller ground terminal footprint is available. ("S" versions)
- Handles 1 A, 30 VDC discrete load and 1 W at 1 GHz .
- Single-coil latching models available.
- Low coil power consumption: 100 mW .
- Ideal for instrumentation and high-speed LAN network equipment.
- RoHS Compliant

Ordering Information

PCB Footprint	Max.Load	Coil Voltage	Non-Latching part number	Single-coil latching part number
$\begin{aligned} & \text { Standard ground } \\ & \text { terminal } \\ & (1 \mathrm{GHz}) \end{aligned}$	1 A at 30 VDC, 0.3 A at 125 VDC	3 VDC	G6K-2F-RF DC3	G6KU-2F-RF DC3
		4.5 VDC	G6K-2F-RF DC4.5	G6KU-2F-RF DC4.5
		5 VDC	G6K-2F-RF DC5	G6KU-2F-RF DC5
		12 VDC	G6K-2F-RF DC12	G6KU-2F-RF DC12
		24 VDC	G6K-2F-RF DC24	G6KU-2F-RF DC24
Space-saving ground terminal (1 GHz)		3 VDC	G6K-2F-RF-S DC3	G6KU-2F-RF-S DC3
		4.5 VDC	G6K-2F-RF-S DC4.5	G6KU-2F-RF-S DC4.5
		5 VDC	G6K-2F-RF-S DC5	G6KU-2F-RF-S DC5
		12 VDC	G6K-2F-RF-S DC12	G6KU-2F-RF-S DC12
		24 VDC	G6K-2F-RF-S DC24	G6KU-2F-RF-S DC24
Space-saving ground terminal (3GHz)		3 VDC	G6K-2F-RF-T DC3	G6KU-2F-RF-T DC3
		4.5 VDC	G6K-2F-RF-T DC4.5	G6KU-2F-RF-T DC4.5
		5 VDC	G6K-2F-RF-T DC5	G6KU-2F-RF-T DC5
		12 VDC	G6K-2F-RF-T DC12	G6KU-2F-RF-T DC12
		24 VDC	G6K-2F-RF-T DC24	G6KU-2F-RF-T DC24

Note: The above listed models are packaged in trays of 300. They are also available in Tape and Reel packaging.

1. Place "-TR03" before the coil voltage to obtain Tape and Reel packaging, in quantities of 300 pieces per reel.
2. Place "-TR09" before the coil voltage to obtain Tape and Reel packaging, in quantities of 900 pieces per reel.

Examples: G6K-2F-RF-S-TR09 DC5
G6KU-2F-RF-TR03 DC12
3. "-TR03" and "-TR09" is only used to identify the tape quantity when ordering and is not marked on the product, itself.

Specifications

Contact Ratings

Load	Resistive load
Rated load	0.3 A at 125 VAC; 1 A at 30 VDC 1 W at 1 GHz (See note.)
Rated carry current	1 A
Max. switching voltage	$125 \mathrm{VAC}, 60$ VDC
Max. switching current	1 A
Max. switching capacity	$37.5 \mathrm{VA}(\mathrm{AC}) ; 30 \mathrm{~W}$ (DC)

Note: This value is for a load with V.S.W.R. ≤ 1.2

Coil Ratings

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Rated voltage } & \text { Rated current } & \text { Coil resistance } & \begin{array}{l}\text { Must operate } \\ \text { voltage }\end{array} & \begin{array}{l}\text { Must release } \\ \text { voltage }\end{array} & \text { Maximum voltage } & \begin{array}{l}\text { Rated power } \\ \text { consumption }\end{array} \\ \hline 3 \text { VDC } & 33.0 \mathrm{~mA} & 91 \Omega & 80 \% \text { max. of rated } & \begin{array}{l}10 \% \text { min. of rated } \\ \text { voltage }\end{array} & 150 \% \text { of rated voltage } & \text { Approx. } 100 \mathrm{~mW} \\ \hline 4.5 \mathrm{VDC} & 23.2 \mathrm{~mA} & 194 \Omega & \text { voltage }\end{array}\right)$

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. The operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

High Frequency Characteristics

		1 GHz , all models	3 GHz , "-T" models
Isolation	between contacts of the same pole	20 dB min.	18 dB min.
	between contacts of different poles	30 dB min.	25 dB min.
Insertion loss		0.2 dB max.	0.6 dB max.
V.S.W.R.		1.2 max.	1.4 max.
Maximum transmission capacity		3 W (See note 3)	
Maximum switching capacity		1 W (See note 3)	

Note: 1. The impedance of the measurement system is 50Ω.
2. The above values are initial
3. These values are for a load with V.S.W.R. ≤ 1.2
4. Contact Omron if the relay will be used in an application that requires high repeatability in high-frequency characteristics for the microload region. (Such applications include Test and Measurement equipment and ATE applications.)

Characteristics

Item		Single-side stable models	Single-winding latching models
		G6K-2F-RF(-S)(-T)	G6KU-2F-RF(-S)(-T)
Contact resistance (See note 2.)		$100 \mathrm{~m} \Omega$ max.	
Operating (set) time (See note 3.)		$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.4 ms)	$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.2 ms)
Release (reset) time (See note 3.)		$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.3 ms)	$3 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.1.2 ms)
Minimum set/reset pulse time		---	10 ms
Insulation resistance (See note 4.)		1,000 M Mmin . (at 500 VDC)	
Dielectric strength	Between coil and contacts	750 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between contacts of different poles	750 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between contacts of the same pole	750 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
	Between ground and coil/contacts	500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	
Vibration resistance	Destruction	10 to $55 \mathrm{~Hz}, 5-\mathrm{mm}$ double amplitude and 55 to 500 to $55 \mathrm{~Hz}, 300 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	10 to $55 \mathrm{~Hz}, 3.3-\mathrm{mm}$ double amplitude and 55 to 500 to $55 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$750 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical	50,000,000 operations min. (at a switching frequency of 36,000 operations/hour)	
	Electrical	100,000 operations min. (at a switching frequency of 1,800 operations/hour)	
Ambient temperature		Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity		Operating: 5\% to 85\%	
Weight		Approx. 0.95 g	

Note: 1. The above values are initial values.
2. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
3. Values in parentheses are typical values.
4. The insulation resistance was measured with a $500-\mathrm{VDC}$ megohmmeter applied to the same parts as those used for checking the dielectric strength.

Engineering Data

High-Frequency Characteristics (Isolation)
G6K-2F-RF

G6K-2F-RF-S

G6K-2F-RF-T

High-frequency Characteristics
(Insertion Loss)
G6K-2F-RF

G6K-2F-RF-S

G6K-2F-RF-T

High-frequency Characteristics (Return Loss, V.S.W.R.) G6K-2F-RF

G6K-2F-RF-S

G6K-2F-RF-T

Note: 1. Refer to the G6K specification for basic specifications and characteristics not shown above
2. Ambient temperature condition: $23^{\circ} \mathrm{C}$
3. The high-frequency characteristics depend on the mounting board. Be sure to check actual operation, including durability, in actual equipment before use.

Dimensions

Note: All dimensions are in millimeters unless otherwise indicated

G6K-2F-RF
G6KU-2F-RF

Mounting Dimensions
 (Top View)

Tolerance $\pm 0.1 \mathrm{~mm}$

Note: 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$
2. The coplanarity of the terminals is 0.15 mm max.

G6K-2F-RF-S

G6KU-2F-RF-S

Mounting Dimensions (Top View)

Tolerance $\pm 0.1 \mathrm{~mm}$

2. The coplanarity of the terminals is 0.15 mm max.

G6K-2F-RF-T

G6KU-2F-RF-T

Mounting Dimensions (Top View)
 Tolerance $\pm 0.1 \mathrm{~mm}$

Note: 1. Each value has a tolerance of $\pm 0.3 \mathrm{~mm}$
2. The coplanarity of the terminals is 0.15 mm max.

Terminal Arrangement and Internal Connections (Top View)

Terminal Arrangement and Internal Connections (Top View)

Terminal Arrangement and Internal Connections (Top View)

G6K-2F-RF-T

G6KU-2F-RF-T
Orientation mark

Tape Packaging Specifications

- Add "-TR03" or "-TR09" before the coil voltage to order relays in Tape and Reel packaging. If "-TR03" or "-TR09" is not included, then the relays will be provided in trays of 300 relays per tray.
- - Add "-TR03" to obtain 300 relays per reel
- - Add "-TR09" to obtain 900 relays per reel

1. Direction of Relay insertion

2. Reel Dimensions

3. Carrier Tape Dimensions G6K(U)-2F-RF

G6K(U)-2F-RF-S

Precautions

Recommended Soldering Method

1. Temperature Profile for Lead Solder (Measured at the PCB)

2. Temperature Profile for Lead-free Solder (Measured at the PCB)

3. The thickness of cream solder to be applied should be between 200 and $250 \mu \mathrm{~m}$ and the land pattern should be based on Omron's recommended PCB pattern. To maintain the correct soldering joint shown in the following diagram, we recommend applying solder using the soldering conditions shown above. Check the soldering in the actual mounting conditions prior to use.

Precautions for correct use

For general precautions, refer to Omron's Relay Technical guidelines, contained in Omron's relay catalog.

Relay Handling

Do not unpack the relay until ready to mount it. Use the relay as soon as possible after opening the moisture-proof bag. Otherwise, the terminals may tarnish and seal failure may occur after the solder process.
When washing the product after soldering, use a water-based or alcohol-based solvent. Keep the solvent temperature below $40^{\circ} \mathrm{C}$. Do not put the relay in a cold cleaning bath immediately after soldering.

Operating, Storage Environment

If the relay is stored for a long time in an adverse environment with high temperature, high humidity, organic or sulfide gases, then sulfide or oxide films will form on the contact surfaces. These films may result in unstable contact, contact problems or function problems. Therefore, operate, store or transport the product under specified environmental conditions.

1. Use in locations where the relay is not exposed to corrosive gas such as hydrogen sulfide gas or salty air.
2. Use in locations where no visible dust exists.
3. Use, store and transport in locations where the product is not exposed to direct sunlight, rain or snow.
4. Do not apply force to the product which may result in deformation or change in quality of the product.

Coating

The relay mounted on the PCB may be coated or washed, but do not apply silicone coating or detergent containing silicone, otherwise, the silicone coating or detergent may remain on the surface of the relay.

Latching Relay Mounting

Make sure that excess vibration or shock doesn't set or reset the relay during normal operation. The relay is shipped in the 'reset' position. Shock or vibration during shipping may require the application of a reset signal, prior to operation.

Claw Securing Force During Automatic Mounting

During automatic insertion of relays, make sure to set the securing force of each claw to the following so that the relay's characteristics will be maintained.

Direction A: 1.96 N max.
Direction B: 4.90 N max.
Direction C: 1.96 N max.
Secure the claws to the shaded area. Do not
K attach them to the center of the relay or just one part of the relay.

Maximum Allowable Voltage

The maximum allowable voltage of the coil can be obtained from the coil temperature increase and the heat-resisting temperature of the coil insulating sheath material. (Exceeding the heat-resisting temperature may result in burning or short-circuiting.) The maximum allowable voltage also involves important restrictions which include the following;

- Must not cause thermal changes in or deterioration of the insulating material, which may result in films developing on the contacts.
- Must not cause damage to other control devices.
- Must not cause any harmful effect on people.
- Must not cause fire.

Therefore, be sure to use the maximum allowable voltage as specified in the catalog. As a rule, the rated voltage must be applied to the coil. Consider using a latching relay instead of a non-latching relay with a continuous voltage applied to the coil.

Long-term, Continuous ON contacts

Using the relay where it will remain continuously energized for long periods of time can lead to unstable contacts. We recommend using a latching relay for this type of application.

\qquad

\qquad

\qquad
\qquad
\qquad

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

847-882-2288

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```

