FEATURES

- Full duplex over single fiber
- DC to 160 MHz link bandwidth
- Link budgets of $2 \mathrm{~km}[1.24$ miles] or greater
- 40 dB isolation
- Low profile ST housing
- Other options available
- VCSEL is Class 1 eye safe

APPLICATIONS

- Full duplex data transmission
- Multiplexing two signals to a single fiber
- LED coupled power measurements and reflected power measurements (depending upon the configuration of the duplex module)

A pair of Honeywell HODXXXX-XXX/BBA series of dual wavelength fiber duplex modules allows full duplex communication over a single fiber link. They may also be used where a dual fiber solution is neither possible nor economical. Alternatively, one duplex module may be used to double the capacity of an existing system.

Each duplex module consists of one on-axis port and one off-axis port, each configured with the appropriate devices. These devices are coupled to the single fiber via integral lenses and a 3 dB wavelength differentiating mirror within the duplex module body. In this configuration, two duplex modules can communicate in opposing directions simultaneously and independently of each other. Depending upon the receiver circuitry used, links of 2 km [1.24 miles] or greater are possible.

The following catalog listings indicate the two devices used in each duplex module.

- HOD2236-111/BBA:
- 1300 nm multimode laser
- 850 nm PIN diode
- HOD4090-111/BBA (corresponding duplex module):
- 850 nm VCSEL (Vertical Cavity Emitting Surface Laser)
- 1300 nm PIN diode

Other options are available on request. These include two LEDs or lasers in one duplex module for single fiber multiplexing, PIN+Preamp receivers ($\mathrm{P}+\mathrm{P}$) or any other preferred devices. Housing options include SC and ST optical ports or a high profile housing for mounting duplex modules side by side. Future connectors will likely include SMA, FC, LC and E2000. See the catalog listing numbering scheme on the back page for complete list of available configurations.

A WARNING

MISUSE OF DOCUMENTATION

- The information presented in this product sheet (or catalog) is for reference only. DO NOT USE this document as product installation information.
- Complete installation, operation and maintenance information is provided in the instructions supplied with each product.
Failure to comply with these instructions could result in death or serious injury.

A WARNING

PERSONAL INJURY

- DO NOT USE these products as safety or emergency stop devices, or in any other application where failure of the product could result in personal injury. Failure to comply with these instructions could result in death or serious injury.

Infrared Products
Single Fiber Duplex Modules

ELECTRO-OPTICAL CHARACTERISTICS FOR THE HOD2236-111/BBA

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Continuous Forward Current	150 mA
Lead Solder Temperature	$260^{\circ} \mathrm{C}\left[500^{\circ} \mathrm{F}\right], 10 \mathrm{sec}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$

CAUTION
 STRESS DAMAGE
 Functional operation of the device at or above "Absolute Maximum Ratings" for extended periods of time may affect reliability.
 Failure to comply with these instructions may result in product damage.

dand

Transmit: 1300 nm Laser (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Fiber Coupled Power	Poc	$\begin{gathered} 40 \\ -14 \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ -12 \end{gathered}$	$\begin{aligned} & 100 \\ & -10 \end{aligned}$	$\begin{gathered} \mu \mathrm{W} \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=17 \mathrm{~mA} \\ & 50 / 125 \mu \mathrm{~m} \text { fiber } \end{aligned}$
Laser Diode Reverse Voltage	$\mathrm{V}_{\mathrm{RLD}}$			2.0	V	
Photo Diode Reverse Voltage	$V_{\text {RPD }}$			10	V	
Photo Diode Forward Current	$V_{\text {FPD }}$			1	mA	
Slope Efficiency	SE	0.3	0.35		$\mathrm{mW} / \mathrm{mA}$	$\mathrm{CW}, \mathrm{Po}=5 \mathrm{~mW}$
Threshold Current	$\mathrm{I}_{\text {TH }}$		12	20	mA	$C W, \mathrm{Po}=5 \mathrm{~mW}$
Peak Wavelength	λp	1290	1310	1330	nm	CW, $\mathrm{Po}=5 \mathrm{~mW}$
Spectral Bandwidth	$\Delta \lambda$		2	5	nm	$\mathrm{CW}, \mathrm{Po}=5 \mathrm{~mW}$
Forward Voltage	V_{F}		1.2	1.5	V	$\mathrm{CW}, \mathrm{Po}=5 \mathrm{~mW}$
Response Time	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\text {f }}$			0.5	ns	$\mathrm{I}_{\text {BIAS }}=I_{\text {TH }}, 10 \%-90 \%$
Photo Diode Monitor Current	Im	100			$\mu \mathrm{A}$	$\mathrm{CW}, \mathrm{Po}=5 \mathrm{~mW}, \mathrm{~V}_{\mathrm{RPD}}=2 \mathrm{~V}$
Photo Diode Dark Current	ldark			0.1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {RLD }}=5 \mathrm{~V}$
Photo Diode Capacitance	C		6	15	pF	$\mathrm{V}_{\text {RLD }}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

Receive: $\mathbf{8 5 0} \mathbf{n m}$ PIN Diode (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Flux Responsivity	R	0.2	0.3		$\mathrm{~A} / \mathrm{W}$	$\lambda=850 \mathrm{~nm}$
Dark Current	I_{D}		0.05	1.5	nA	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$
Reverse Voltage	BVR			50	V	
Response Time						
$10 \%-90 \%$	t_{r}		1.2	3	ns	$\mathrm{~V}_{\mathrm{R}}=3.5 \mathrm{~V}$
$90 \%-10 \%$	t_{f}		1.2	3		
Capacitance	C		1.5		pF	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$

Infrared Products
Single Fiber Duplex Modules

CAUTION

PRODUCT DAMAGE DUE TO ESD
Ensure normal ESD (Electrostatic Discharge) precautions are followed when handling this product.
Failure to comply with these instructions may result in product damage.
HOD2236-111/BBA Duplex Module
Mounting and Dimensional Drawing (for reference only mm[in])

Infrared Products
 Single Fiber Duplex Modules

ELECTRO-OPTICAL CHARACTERISTICS FOR THE HOD4090-111/BBA

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted $)$		
Continuous Forward Current	100 mA	
Lead Solder Temperature	$260^{\circ} \mathrm{C}\left[500^{\circ} \mathrm{F}\right], 10 \mathrm{sec}$	
Operating Temperature	$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
Storage Temperature	$-45^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-49^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	

CAUTION

STRESS DAMAGE
Functional operation of the device at or above "Absolute Maximum Ratings" for extended periods of time may affect reliability.
Failure to comply with these instructions may result in product damage.

Transmit: 850 nm VCSEL (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Fiber Coupled Power	Poc	$\begin{gathered} 200 \\ -7 \end{gathered}$	$\begin{aligned} & \hline 300 \\ & -5.2 \end{aligned}$	$\begin{gathered} 400 \\ -4 \end{gathered}$	$\mu \mathrm{W}$	$\begin{aligned} & I_{F}=12 \mathrm{~mA} \\ & 50 / 125 \mu \mathrm{~m} \text { fiber } \end{aligned}$
Laser Classification				Class 1		If $<15 \mathrm{~mA} \mathrm{dc}$
Threshold Current	$\mathrm{I}_{\text {TH }}$		3.6	6	mA	
$\mathrm{I}_{\text {TH }}$ Temperature Variation	$\Delta \mathrm{I}_{\text {TH }}$	-1		1	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Slope Efficiency	η	0.1	0.2	0.4	$\mathrm{mW} / \mathrm{mA}$	$\mathrm{Po}=1.3 \mathrm{~mW}$
η Temperature Variation	$\Delta \eta$		-0.4		\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Peak Wavelength	λp	820	850	860	nm	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA} \mathrm{dc}$
λ p Temperature Coefficient	$\Delta \lambda p / \Delta T$		0.06		$\mathrm{nm} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
Spectral Bandwidth	$\Delta \lambda$			0.85	nm	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
Laser Forward Voltage	VF	1.6	1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
Laser Reverse Voltage	$\mathrm{BVR}_{\mathrm{LD}}$	5	10		V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
$\begin{aligned} & \text { Response Time } \\ & -40^{\circ} \mathrm{C}<\mathrm{T}<100^{\circ} \mathrm{C}, 10 \%-90 \% \\ & -40^{\circ} \mathrm{C}<\mathrm{T}<100^{\circ} \mathrm{C}, 90 \%-10 \% \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	ps	Bias above threshold
Relative Intensity Noise	RIN		-128	-122	dB/Hz	1 GHz BW
Series Resistance	R_{S}	15	25	50	Ohms	$\mathrm{I}_{\mathrm{F}=12 \mathrm{~mA}}$
Monitor Current	IPD	0.020		0.044	mA	$\mathrm{Po}=1.3 \mathrm{~mW}$
IPD Temperature Variation	$\Delta \mathrm{l}_{\text {PD }} / \Delta \mathrm{T}$		0.2		\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{Po}=0.5 \mathrm{~mW}$
Dark Current	I_{D}			20	NA	$\mathrm{Po}=0 \mathrm{~mW}, \mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$
PD Reverse Voltage	$\mathrm{BVR}_{\text {PD }}$	30	115		V	$\mathrm{Po}=0 \mathrm{~mW}, \mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
PD Capacitance	C		$\begin{gathered} 100 \\ 55 \end{gathered}$		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V}, \text { Freq }=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}, \text { Freq }=1 \mathrm{MHz} \end{aligned}$

Receive: $\mathbf{1 3 0 0} \mathbf{n m}$ PIN Diode (All tests made at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Flux Responsivity	R	0.45	0.50		$\mathrm{~A} / \mathrm{W}$	$\lambda=1300 \mathrm{~nm}$
Dark Current	I_{D}		2.0	5.0	nA	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Response Time						
$10 \%-90 \%$	tr_{r}			1	ns	$\lambda=1300 \mathrm{~nm}$
$90 \%-10 \%$	t_{f}			1		
Cut Off Frequency	FC		1500		MHz	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{RL}=50 \Omega$
Capacitance	C		1.5	1.7	pF	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Maximum Reverse Voltage	$\mathrm{V}_{\mathrm{Rmax}}$			20	V	
Isolation	ICx		40		dB	$\mathrm{I}_{\mathrm{F}}(\mathrm{LED})=100 \mathrm{~mA} \mathrm{dc}$

Infrared Products
Single Fiber Duplex Modules

CAUTION

PRODUCT DAMAGE DUE TO ESD

Ensure normal ESD (Electrostatic Discharge) precautions are followed when handling this product.
Failure to comply with these instructions may result in product damage.
HOD4090-111/BBA Duplex Module
Mounting and Dimensional Drawing (for reference only mm[in])

Duplex Module Catalog Listing Numbering Scheme

*The second digit of each pair of port device numbers corresponds to the specific device used.

Example: HOD4013-132/BBA defines:

$\mathbf{4 0}$	1300 nm PIN in Port 1 (on axis)
$\mathbf{1 3}$	850 nm LED in Port 2 (perpendicular axis)
$\mathbf{-}$	
$\mathbf{1}$	$<3 \mathrm{~ns}$ Rise/Fall Time (1300 nm PIN)
$\mathbf{3}$	$<10 \mathrm{~ns}$ Rise/Fall Time (850 nm LED)
$\mathbf{2}$	20 dB link budget when used with corresponding duplexer
\boldsymbol{I}	
\mathbf{B}	ST Low profile connector
\mathbf{B}	PCB mounting
\mathbf{A}	Normal leads

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.
While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.
For application assistance, current specifications, or name of the nearest Authorized Distributor, check the Honeywell web site or call:

1-800-537-6945 USA
1-800-737-3360 Canada
441698481481 Europe
1-815-235-6847 International
FAX
1-815-235-6545 USA

INTERNET

www.honeywell.com/sensing info.sc@honeywell.com

Control Products

Honeywell
11 West Spring Street
Freeport, Illinois 61032

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fiber Optic Transmitters, Receivers, Transceivers category:
Click to view products by Honeywell manufacturer:
Other Similar products are found below :
FWLF-1521-7D-47 FWLF-1521-7D-61 HFBR-1532ETZ HFBR-2541ETZ HFBR-2602Z AFBR-0548Z AFBR-1639Z AFBR-1539Z AFBR2634Z AFCT-5962ATLZ FTLX3813M354 HFBR-2531ETZ STV.2413-574-00262 TRPRG1VA1C000E2G TORX1952(6M,F) TOTX1350(F) TOTX1350(V,F) FTLX3813M349 HFBR-2542ETZ SCN-1428SC AFBR-POC406L HFBR-2506AFZ FTLX1871M3BNL FWLF-1521-7D-49 HFBR-1542ETZ FWLF-1519-7D-49 HFBR-2532ETZ AFBR-1541CZ TORX1355(V,F) AFBR-1521CZ LTK-ST11MB TORX1355(F) HFD8003-002/XBA HFD3020-500-ABA S6846 SCN-2638SC FTL410QE4N SCN-1570SC SCN-1601SC SCN-1338SC HFBR-1505CFZ AFBR-1528CZ AFBR-1531CZ HFD3081-108-XBA HFD8003-500-XBA SCN-1255SC SCN-1383SC $1019682 \underline{1019683}$ 1019705

