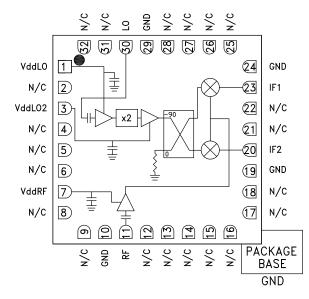


v06.0514



Typical Applications

The HMC572LC5 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar, EW & ELINT
- Satellite Communications

Functional Diagram

GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

Features

8 dB Conversion Gain Image Rejection: 18 dB 2 LO to RF Isolation: 35 dB Noise Figure: 3.5 dB Input IP3: +5 dBm 32 Lead 5x5mm SMT Package: 25mm²

General Description

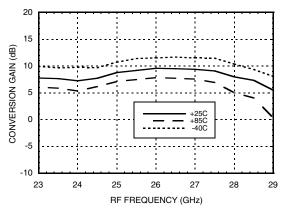
The HMC572LC5 is a compact GaAs MMIC I/Q downconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 8 dB with a noise figure of 3.5 dB and 18 dB of image rejection across the frequency band. The HMC572LC5 utilizes an LNA followed by an image reject mixer which is driven by an active x2 multiplier. The image reject mixer eliminates the need for a filter following the LNA, and removes thermal noise at the image frequency. I and Q mixer outputs are provided and an external 90° hybrid is needed to select the required sideband. The HMC572LC5 is a much smaller alternative to hybrid style image reject mixer downconverter assemblies, and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25$ °C, IF = 100 MHz, LO = +4 dBm, Vdd = 3.5 Vdc*

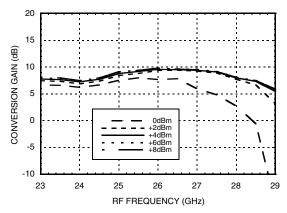
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF	24.5 - 26.5			23 - 28			GHz
Frequency Range, LO	9 - 15.5			9 - 15.5			GHz
Frequency Range, IF	DC - 3.5			DC - 3.5			GHz
Conversion Gain (As IRM)	6.0	8.0		6	10		dB
Noise Figure		3.5			3.5		dB
Image Rejection	14	17		14	20		dB
1 dB Compression (Input)	-6	-4		-7	-5		dBm
2 LO to RF Isolation	32	35		30	35		dB
2 LO to IF Isolation	30	40		25	40		dB
IP3 (Input)	+5	+8		+3	+6		dBm
Amplitude Balance		0.3			0.4		dB
Phase Balance		5			8		Deg
Total Supply Current		125	165		125	165	mA

*Data taken as IRM with external IF Hybrid

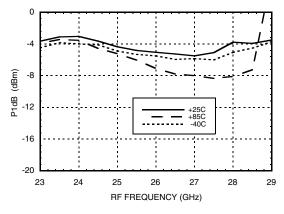
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



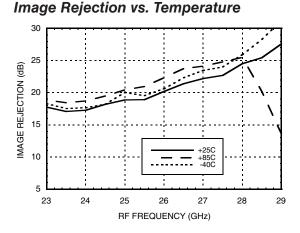
v06.0514



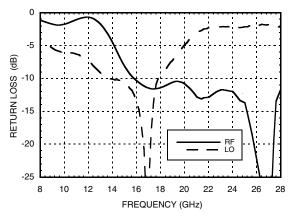
Data Taken As IRM With External IF Hybrid


Conversion Gain vs. Temperature

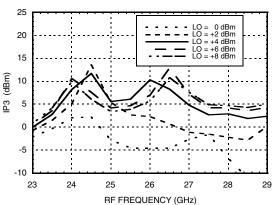
Conversion Gain vs. LO Drive



Input P1dB vs. Temperature

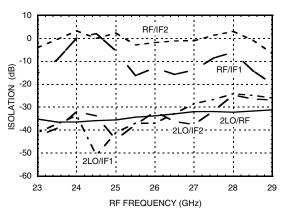


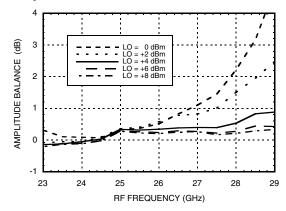
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

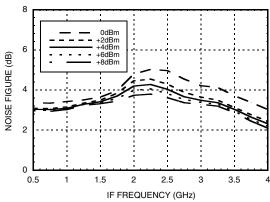
Return Loss

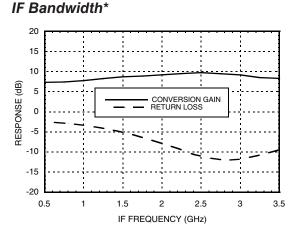
Input IP3 vs. LO Drive


GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

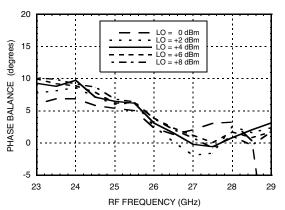

Quadrature Channel Data Taken Without IF Hybrid

v06.0514

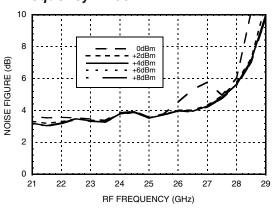

Isolations



Amplitude Balance vs. LO Drive



Noise Figure vs. LO Drive, LO Frequency = 12 GHz



Phase Balance vs. LO Drive

Noise Figure vs. LO Drive, IF Frequency = 100 MHz

* Conversion gain data taken with external IF hybrid, LO frequency fixed at 12 GHz and RF varied

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514

GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	37	12	32	45
1	12	41	0	37	41
2	xx	хх	66	70	46
3	xx	хх	xx	хх	79
4	xx	хх	xx	хх	xx
RF = 25 GHz @ -20 dBm					

LO = 12 GHz @ +4 dBm

Data taken without IF hybrid

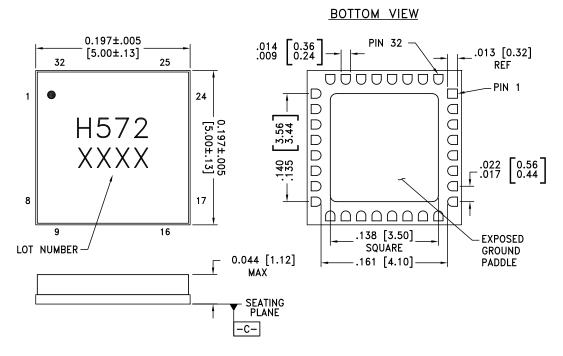
All values in dBc below IF power level (1RF -2LO = 1 GHz)

Absolute Maximum Ratings

RF	+2 dBm
LO Drive	+ 13 dBm
Vdd	5.5V
Channel Temperature	175°C
Continuous Pdiss (T=85°C) (derate 9.56 mW/°C above 85°C)	860 mW
Thermal Resistance (R _{TH}) (channel to package bottom)	104.6 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1B

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v06.0514

GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

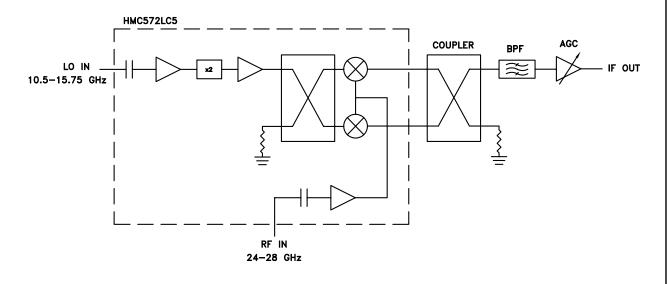
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC572LC5	Alumina, White	Gold over Nickel	MSL3 ^[1]	H572 XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514



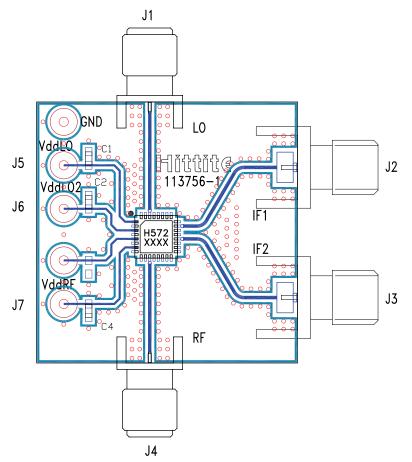
GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	VddLO	Power supply for first stage of LO amplifier.	VddLO 0
2, 4 - 6, 8, 9, 12 - 18, 21, 22, 25 - 28, 31, 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
3	VddLO2	Power supply for second stage of LO amplifier.	VddLO2 O
7	VddRF	Power supply for RF LNA.	VddRF O
10, 19, 24, 29	GND	These pins and ground paddle must be connected to RF/DC ground.	
11	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○
20	IF2	This pin is DC coupled for applications not requiring operation to DC. This port should be DC blocked externally using a series capacitor whose value has	
23	IF1	been chosen to pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	
30	LO	This pin is AC coupled and matched to 50 Ohms.	LO 0

Typical Application

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v06.0514

GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

Evaluation PCB

List of Materials for Evaluation PCB 113758^[1]

Item	Description
C1 - C4	Capacitor 0603, 0.01 µF
J1, J4	PCB Mount SMA RF Connector, SRI
J2, J3	PCB Mount SMA Connector, Johnson
J5 - J7	DC Pin
U1	HMC572LC5
PCB [2]	113756 Evaluation Board

 $\left[1\right]$ Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent to patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v06.0514

GaAs MMIC I/Q DOWNCONVERTER 24 - 28 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Up-Down Converters category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

HMC7586-SX HMC8120-SX HMC8121-SX HMC7587 HMC8118 HMC8118-SX MAX2680AUT+T MAX9996ETP+T ADMV4530ACCZ F1102NBGI8 HMC6147ALC5ATR MDS-158-PIN LA8153QA-WH HMC7912LP5ETR HMC377QS16GETR HMC1090LP3ETR F1162NBGI F1178NBGI MD-123-PIN ADRF6780ACPZN-R7 MAX9993ETP+ MAX9996ETP+ SM5T SKY73062-11 MAX2680EUT+T MAX2671EUT+T MAX19997AETX+ MAX19993ETX+ MAX19985AETX+ MAMXSS0012TR-3000 MY63C MY87C M2A CSM2-10 CSM1-13 CHR3762-QDG MAX2671EUT-T MAX19994AETX+ MAX2663EUT+T MAX19999ETX+ MAX19995ETX+ TGC4408-SM TGC4510-SM TGC4610-SM TGC4407-SM TGC2510-SM MY63H HMC904LC5TR ADRF6658BCPZ-RL7 AD6620ASZ-REEL