GaAs MMIC SPST
 FAILSAFE SWITCH, DC - 6 GHz

Typical Applications

The HMC550 / HMC550E is ideal for:

- RFID \& Electronic Toll Collection (ETC)
- Tags, Handsets \& Portables
- ISM, WLAN, WiMAX \& WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Electrical Specifications

Features

Failsafe Operation - "On" When Unpowered
Wide Vdd Range: 1.2 V to 5 V
Very Low On State Current: 200 nA
Low Insertion Loss: 0.7 dB
High IP3: +52 dBm
Compact SOT26 SMT Package

General Description

The HMC550 and HMC550E are low-cost SPST Failsafe switches in 6-lead SOT26 plastic packages for use in switching applications which require low insertion loss and very low current consumption. With 0.7 dB typical loss, these devices can control signals from DC to 6 GHz and are especially suited for IF and RF applications including RFID, ISM, automotive and battery powered tags and portables. RF1 and RF2 are reflective opens when "Off". The switch requires a minimal amount of DC current in the "On" state, and offers compatibility with CMOS and some TTL logic families. The failsafe topology results in the switch being normally "On", i.e. low insertion loss from RF1 to RF2, when no DC bias is applied.
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vdd}=+3.3 \mathrm{Vdc}, \mathrm{Vctl}=0 /+3.3 \mathrm{Vdc}$ (Unless Otherwise Stated), 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	DC - 6.0 GHz		0.7	0.9	dB
Isolation	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-6.0 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 15 \\ 8 \end{gathered}$	$\begin{aligned} & 25 \\ & 12 \end{aligned}$		dB dB
Return Loss	DC - 6.0 GHz		20		dB
Input Power for 0.1 dB Compression $\quad \mathrm{Vctl}=0 /+3.3 \mathrm{~V}$	$0.5-6.0 \mathrm{GHz}$	23	27		dBm
Input Third Order Intercept (Two-tone Input Power $=+17 \mathrm{dBm}$ Each Tone) $\mathrm{Vctl}=0 /+3.3 \mathrm{~V}$	0.5-6.0 GHz		52		dBm
Switching Characteristics tRISE, tFALL (10/90\% RF) tON, tOFF (50% CTL to $10 / 90 \%$ RF)	DC - 6.0 GHz		$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vctl} \&$ Vdd Unpowered

Insertion Loss	DC -6.0 GHz		0.7	0.9
Return Loss	$\mathrm{DC}-6.0 \mathrm{GHz}$		20	
Input Power for 0.1 dB Compression	$0.5-6.0 \mathrm{GHz}$	23	27	dB
Input Third Order Intercept (Two-tone Input Power $=+17 \mathrm{dBm}$ Each Tone)	$0.5-0.6 \mathrm{GHz}$		dBm	

[^0]GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Insertion Loss

Isolation

Return Loss

Input IP3 vs. Temperature

GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz

Insertion Loss, Power Off

Input P0.1dB, Power Off

Return Loss, Power Off

Input IP3, Power Off

Operating Conditions

Vdd \& Vctl = 0 Vdc to +5 Vdc; VctI_max = Vdd + 0.2 Vdc; Idd \& Ictl = $0.1 \mu A$, Typical

Conditions	$\mathrm{Vdd}-\mathrm{Vctl} \geq+1.2 \mathrm{Vdc}$	$-0.2 \mathrm{Vdc}<\mathrm{Vdd}-\mathrm{Vctl}<+0.4 \mathrm{Vdc}$
RF1 - RF2	OFF	ON

Examples of Typical Operating Conditions - Idd \& Ictl = $0.1 \mu A$, Typical

Vdd (V)	0 (Unpowered)	1.2		2.2		3.3		5	
$\mathrm{Vctl}(\mathrm{V})$	0 (Unpowered)	0	>0.8	<1.0	>1.8	<2.1	>2.9	<3.8	>4.6
RF1 - RF2	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON

Absolute Maximum Ratings

RF Input Power (Vctl $=0 /+3.3 \mathrm{~V})$	+34 dBm
Supply Voltage (Vdd)	+12 Vdc
Control Voltage Range (Vctl)	$-0.2 \mathrm{to}+(\mathrm{Vdd}+0.2) \mathrm{Vdc}$
Hot Switch Power Level $(\mathrm{Vctl}=0 /+3.3 \mathrm{~V})$	+35 dBm
Channel Temperature	$150^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right)$ (derate 6.67 mW $/{ }^{\circ} \mathrm{C}$ above $\left.85^{\circ} \mathrm{C}\right)$	433 mW
Thermal Resistance	$150^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC550	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 $^{[1]}$	H550
HMC550E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$550 E$

[^1]HMC550 / 550E
v01.1010
GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1,3	RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2,5	GND	These pins must be connected to RF ground.	
4	Vdd	Supply Voltage	
6	Sctl		

Typical Application Circuit

Note:

1. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

Evaluation PCB

List of Materials for Evaluation PCB $109266{ }^{[1]}$

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3- J5	DC Pin
C1	$1,000 \mathrm{pF}$ Capacitor, 0402 Pkg.
C2 - C3	100 pF capacitor, 0402 Pkg.
R1, R2	100 Ohm Resistor, 0402 Pkg.
U1	HMC550 / HMC550E SPST Switch
PCB [2]	108436 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

[^0]: For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

[^1]: [1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
 [2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

