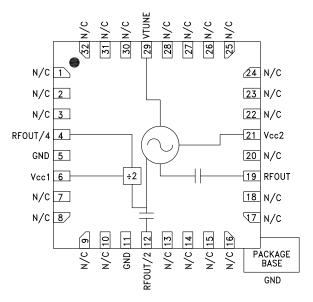


HMC531LP5 / 531LP5E

v04.0811


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 13.6 - 14.9 GHz

Typical Applications

Low noise MMIC VCO w/Half Frequency, Divide-by-4 Outputs for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- Military End-Use

Functional Diagram

Features

Dual Output: Fo = 13.6 - 14.9 GHzFo/2 = 6.8 - 7.45 GHz

Pout: +7 dBm

Phase Noise: -110 dBc/Hz @100 kHz Typ.

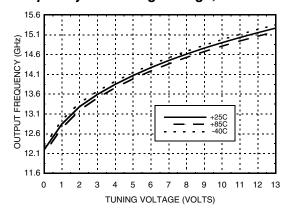
No External Resonator Needed

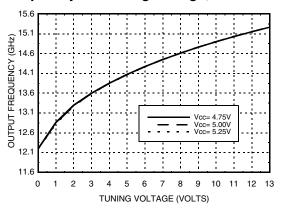
32 Lead 5x5mm SMT Package: 25mm²

General Description

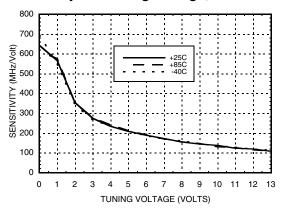
The HMC531LP5 & HMC531LP5E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC531LP5 & HMC531LP5E integrate resonators, negative resistance devices, varactor diodes and feature half frequency and divide-by-4 outputs. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +7 dBm typical from a +5V supply voltage. The prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 5x5 mm surface mount package, and requires no external matching components.

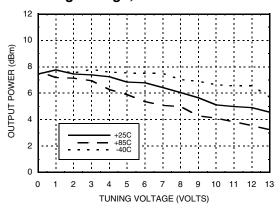
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2 = +5V

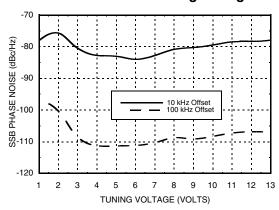

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		13.6 - 14.9 6.8 - 7.45		GHz GHz
Power Output	RFOUT/ RFOUT/2 RFOUT/4	+3 +8 -9		+10 +14 -3	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-110		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	lcc1 & lcc2	220	260	300	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			8		dB
Harmonics/Subharmonics	1/2 3/2 2nd 3rd		25 35 18 40		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			5		MHz pp
Pushing @ Vtune= 5V			6		MHz/V
Frequency Drift Rate			1.2		MHz/°C

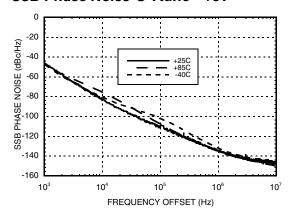


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 13.6 - 14.9 GHz


Frequency vs. Tuning Voltage, Vcc = +5V

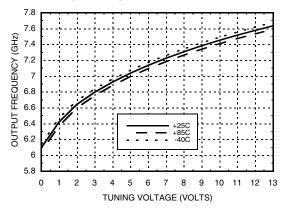

Frequency vs. Tuning Voltage, T= 25°C

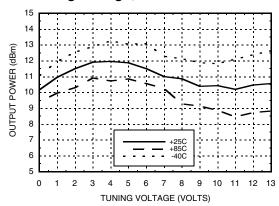

Sensitivity vs. Tuning Voltage, Vcc= +5V


Output Power vs. Tuning Voltage, Vcc= +5V

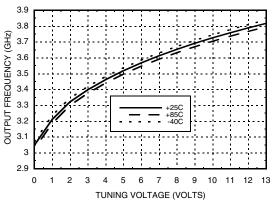
SSB Phase Noise vs. Tuning Voltage

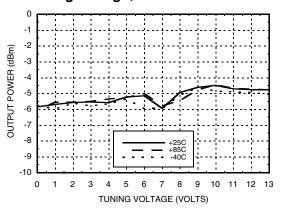
SSB Phase Noise @ Vtune= +5V





MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 13.6 - 14.9 GHz


RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +5V


RFOUT/2 Output Power vs. Tuning Voltage, Vcc= +5V

Divide-by-4 Frequency vs. Tuning Voltage, Vcc= +5V

Divide-by-4 Output Power vs. Tuning Voltage, Vcc= +5V

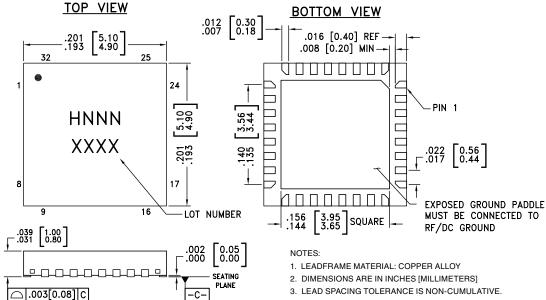
Absolute Maximum Ratings

Vcc1, Vcc2	+5.5 Vdc
Vtune	0 to +15V
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 37 mW/C above 85 °C	1.85 W
Thermal Resistance (junction to ground paddle)	27 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	235
5.00	260
5.25	275

Note: VCO will operate over full voltage range shown above.


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 13.6 - 14.9 GHz

Outline Drawing

- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

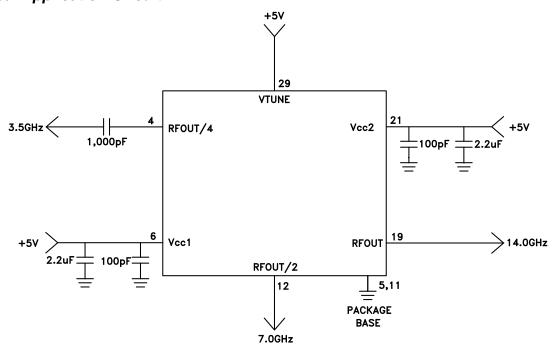
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC531LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 ^[1]	H531 XXXX
HMC531LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 [2]	H531 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 3, 7 - 10, 13 - 18, 20, 22 - 28, 30 - 32	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
4	RFOUT/4	Divide-by-4 Output.	5V ORFOUT/4
6	Vcc1	Supply Voltage for prescaler. If prescaler is not required, this pin may be left open to conserve 65 mA of current.	Vcc1 0

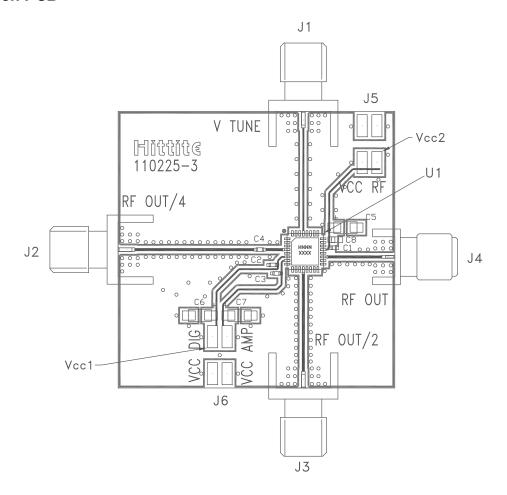

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 13.6 - 14.9 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
12	RFOUT/2	Half frequency output (AC coupled).	HORFOUT/2
19	RF OUT	RF output (AC coupled).	PO RFOUT
21	Vcc2	Supply Voltage, +5V	Vcc2 O14pF
29	VTUNE	Control Voltage and Modulation Input. Modulation bandwidth dependent on drive source impedance. See "Determining the FM Bandwidth of a Wideband Varactor Tuned VCO" application note.	3nH VTUNE 0 3.6pF
5, 11 Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	GND

v04.0811

Typical Application Circuit



MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 13.6 - 14.9 GHz

Evaluation PCB

List of Materials for Evaluation PCB 110227 [1]

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5 - J6	2 mm DC Header
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4	1,000 pF Capacitor, 0402 Pkg.
C5 - C7	2.2 µF Tantalum Capacitor
U1	HMC531LP5(E) VCO
PCB [2]	110225 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for VCO Oscillators category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAOC-009268-PKG003 MAOC-009260-SMB003 CPLL58-2400-2500 HMC389LP4ETR MAX2750EUA+T MAX2754EUA

MAX2623EUA+T CVCO55CC-4000-4000 HMC384LP4ETR CRBV55CWQ-0800-1600 CVCO33CL-0110-0150 CVCO33CL-0415-0435

CVCO33CL-0435-0470 CVCO33CL-0750-0770 HMC507LP5ETR CPLL66-3900-4300 CVCO55CC-0430-0480 CVCO55CC-0827-0840

CVCO55CC-1515-1600 CVCO55CC-1680-1680 CVCO55CC-1690-1750 CVCO55CC-2032-2032 CVCO55CC-2122-2242 CVCO55CC-2140-2140 CVCO55CC-2290-2410 CVCO55CC-2300-2400 CVCO55CC-2310-2320 CVCO55CC-2328-2536 CVCO55CC-2400-2415

CVCO55CC-2400-2600 CVCO55CC-2440-2540 CVCO55CC-2594-3026 CVCO55CC-2620-2710 CVCO55CC-2970-3230 CVCO55CC-3180-3710 CVCO55CC-3350-3500 CVCO55CC-3901-4101 CVCO55CC-4267-4442 CEVAL-055 CVCO55CC-0444-0485 CVCO55CC-0787-0805 CVCO55CC-0971-0975 CVCO55CC-1260-1400 CVCO55CC-1372-1427 CVCO55CC-1420-1480 CVCO55CC-1435-1491

CVCO55CC-1443-1523 CVCO55CC-1490-1550 CVCO55CC-1560-1615 CVCO55CC-1581-1581