CBTD3306

Dual bus switch with level shifting

Rev. 8 — 1 May 2012

Product data sheet

1. General description

The CBTD3306 dual FET bus switch features independent line switches. Each switch is disabled when the associated output enable (nOE) input is HIGH.

The CBTD3306 is characterized for operation from $-40~^{\circ}\text{C}$ to $+85~^{\circ}\text{C}$.

2. Features and benefits

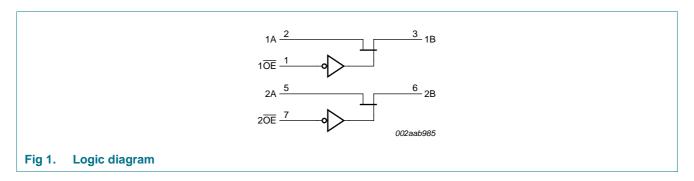
- Designed to be used in 5 V to 3.3 V level shifting applications with internal diode
- \blacksquare 5 Ω switch connection between two ports
- TTL-compatible input levels
- Multiple package options
- Latch-up protection exceeds 100 mA per JESD78B
- ESD protection:
 - ♦ HBM JESD22-A114F exceeds 2000 V
 - ◆ CDM JESD22-C101E exceeds 1000 V

3. Ordering information

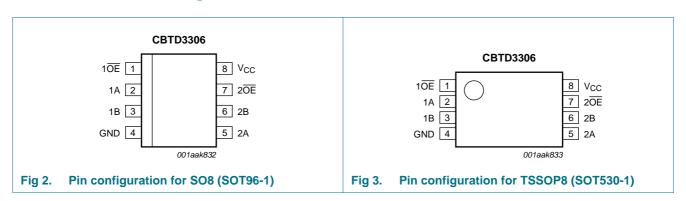
Table 1. Ordering information

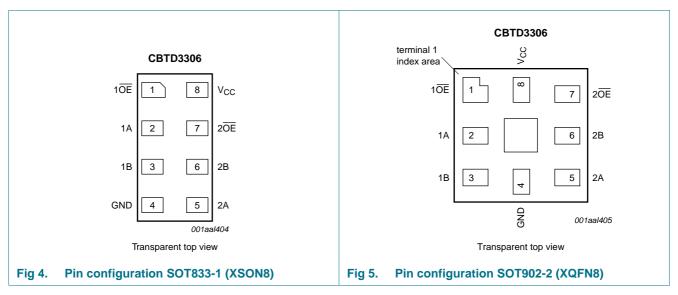
Type number	Package	Package								
	Name	Name Description								
CBTD3306D	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1							
CBTD3306PW	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 4.4 mm	SOT530-1							
CBTD3306GT	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1							
CBTD3306GM	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2							

4. Marking


Table 2. Marking codes

3	
Type number	Marking code
CBTD3306D	CBD3306
CBTD3306PW	D306
CBTD3306GT	W06
CBTD3306GM	W06


Dual bus switch with level shifting


5. Functional diagram

6. Pinning information

6.1 Pinning

Dual bus switch with level shifting

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
10E, 20E	1, 7	output enable input
1A, 2A	2, 5	data input/output (A port)
1B, 2B	3, 6	data input/output (B port)
GND	4	ground (0 V)
V _{CC}	8	positive supply voltage

7. Functional description

Table 4. Function selection[1]

Input nOE	Input/output
nOE	nA, nB
L	nA = nB
Н	Z

^[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). \Box $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		<u>[2]</u> -0.5	+7.0	V
I _{SW}	switch current		-	128	mA
I _{IK}	input clamping current	$V_{I/O} = 0 V$	-50	-	mA
T _{stg}	storage temperature		-65	+150	°C

^[1] Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Section 9. is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

9. Recommended operating conditions

Table 6. Operating conditions

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		4.5	-	5.5	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
V_{IL}	LOW-level input voltage		-	-	0.8	V
T _{amb}	ambient temperature	operating in free air	-40	-	+85	°C

CBTD3306

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

^[2] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Dual bus switch with level shifting

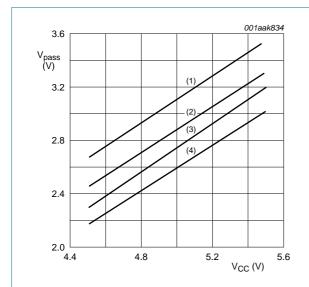
10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

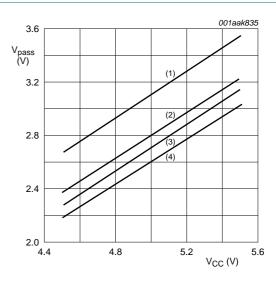
Symbol	Parameter	Conditions		T _{amb} =	Unit		
				Min	Typ[1]	Max	
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_I = -18 \text{ mA}$		-	-	-1.2	V
I	input leakage current	$V_{CC} = 5.5 \text{ V}; V_I = \text{GND or } 5.5 \text{ V}$		-	-	±1	μΑ
I _{CC}	supply current	V_{CC} = 5.5 V; I_{SW} = 0 mA; V_I = V_{CC} or GND		-	-	1.5	mA
V_{pass}	pass voltage	see Figure 6 to Figure 10		-	-	-	V
ΔI_{CC}	additional supply current	per input pin; $V_{CC} = 5.5 \text{ V}$; one input at 3.4 V, other inputs at V_{CC} or GND	[2]	-	-	2.5	mA
Cı	input capacitance	control pin; $V_I = 3 \text{ V or } 0 \text{ V}$		-	3.2	-	pF
C _{io(off)}	off-state input/output capacitance	port off; $V_1 = 3 \text{ V or } 0 \text{ V; } n\overline{OE} = V_{CC}$		-	6.5	-	pF
R _{ON}	ON resistance	$V_{CC} = 4.5 \text{ V}; V_I = 0 \text{ V}; I_I = 64 \text{ mA}$	[3]	-	3.6	5	Ω
		$V_{CC} = 4.5 \text{ V}; V_I = 0 \text{ V}; I_I = 30 \text{ mA}$	[3]	-	3.6	5	Ω
		$V_{CC} = 4.5 \text{ V}; V_I = 2.4 \text{ V}; I_I = 15 \text{ mA}$	[3]	-	17	35	Ω

^[1] All typical values are at V_{CC} = 5 V, T_{amb} = 25 °C.

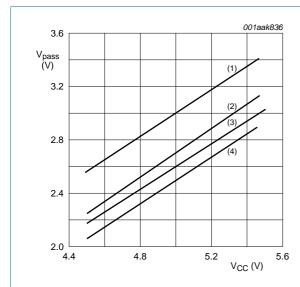

^[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

^[3] Measured by the voltage drop between the nA and the nB terminals at the indicated current through the switch. ON resistance is determined by the lowest voltage of the two (nA or nB) terminals.

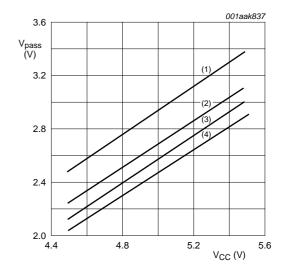
CBTD3306 Nexperia


Dual bus switch with level shifting

10.1 Typical pass voltage graphs

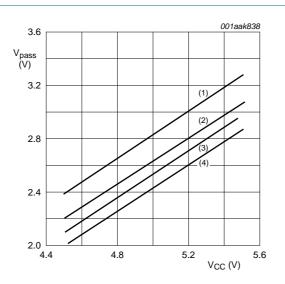

- (1) $I_{SW} = 100 \,\mu\text{A}$
- (2) $I_{SW} = 6 \text{ mA}$
- (3) $I_{SW} = 12 \text{ mA}$
- (4) $I_{SW} = 24 \text{ mA}$

Pass voltage versus supply voltage; T_{amb} = 85 °C (typical)


- (1) $I_{SW} = 100 \mu A$
- (2) $I_{SW} = 6 \text{ mA}$
- (3) $I_{SW} = 12 \text{ mA}$
- (4) $I_{SW} = 24 \text{ mA}$

Pass voltage versus supply voltage; Fig 7. T_{amb} = 70 °C (typical)

- (1) $I_{SW} = 100 \,\mu\text{A}$
- (2) $I_{SW} = 6 \text{ mA}$
- (3) $I_{SW} = 12 \text{ mA}$
- (4) $I_{SW} = 24 \text{ mA}$


Fig 8. Pass voltage versus supply voltage; T_{amb} = 25 °C (typical)

- (1) $I_{SW} = 100 \mu A$
- (2) $I_{SW} = 6 \text{ mA}$
- (3) $I_{SW} = 12 \text{ mA}$
- (4) $I_{SW} = 24 \text{ mA}$

Fig 9. Pass voltage versus supply voltage; T_{amb} = 0 °C (typical)

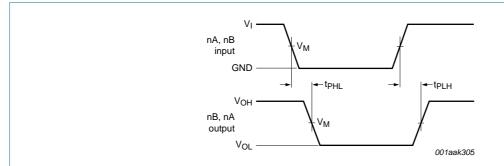
Dual bus switch with level shifting

- (1) $I_{SW} = 100 \,\mu\text{A}$
- (2) $I_{SW} = 6 \text{ mA}$
- (3) $I_{SW} = 12 \text{ mA}$
- (4) $I_{SW} = 24 \text{ mA}$

Fig 10. Pass voltage versus supply voltage; $T_{amb} = -40$ °C (typical)

Dual bus switch with level shifting

11. Dynamic characteristics


Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 13.

Symbol	Parameter	Conditions	T _{amb} =	Unit			
				Min	Тур	Max	
t _{pd}	propagation delay	nA, nB to nB, nA; see Figure 11	[1][2]	-	-	0.25	ns
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$					
t _{en}	enable time	nOE to nA or nB; see Figure 12	[2]	1.0	-	5.4	ns
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$					
t _{dis}	disable time	nOE to nA or nB; see Figure 12	[2]	1.0	-	4.9	ns
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$					

^[1] The propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

12. Waveforms

Measurement points are given in Table 9.

 $Logic \ levels: V_{OL} \ and \ V_{OH} \ are \ typical \ output \ voltage \ levels \ that \ occur \ with \ the \ output \ load.$

Fig 11. The data input (nA, nB) to output (nB, nA) propagation delay times

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} . t_{en} is the same as t_{PZL} and t_{PZH} . t_{dis} is the same as t_{PLZ} and t_{PHZ} .

Dual bus switch with level shifting

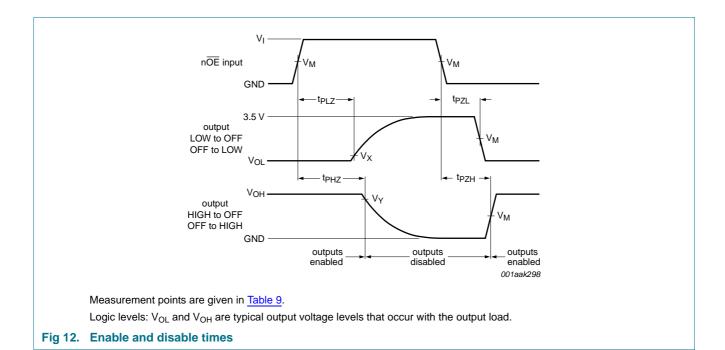
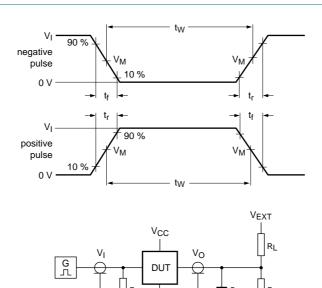



Table 9. Measurement points

Supply voltage	Input		Output					
V _{CC}	V _I V _M		V _M	V _X	V_{Y}			
V_{CC} = 5.0 V \pm 0.5 V	GND to 3.0 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V			

Dual bus switch with level shifting

13. Test information

Test data is given in Table 10.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50~\Omega$.

001aae331

The outputs are measured one at a time with one transition per measurement.

Definitions for test circuit:

 R_L = Load resistance.

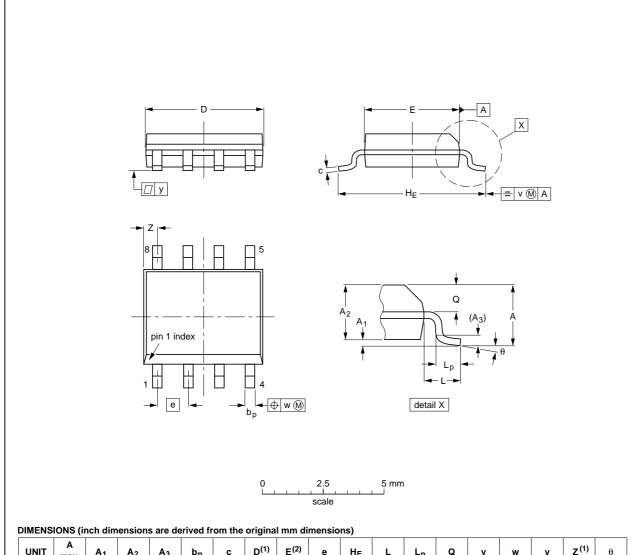
C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 13. Test circuit for measuring switching times

Table 10. Test data


Supply voltage	Input		Load		V _{EXT}			
	V _I t _r , t _f		CL	R_L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	GND to 3.0 V	≤ 2.5 ns	50 pF	500 Ω	open	7.0 V	open	

Dual bus switch with level shifting

14. Package outline

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

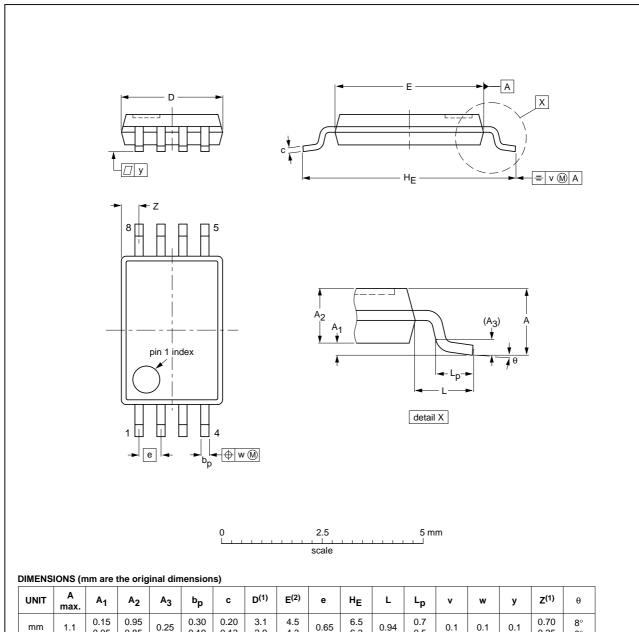
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	ENCES		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	JEITA PROJECTION		1330E DATE
SOT96-1	076E03	MS-012				99-12-27 03-02-18
	VERSION	VERSION IEC	VERSION IEC JEDEC	VERSION IEC JEDEC JEITA	VERSION IEC JEDEC JEITA	VERSION IEC JEDEC JEITA PROJECTION

Fig 14. Package outline SOT96-1 (SO8)


CBTD3306

All information provided in this document is subject to legal disclaimers.

CBTD3306 Nexperia

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 4.4 mm

SOT530-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.85	0.25	0.30 0.19	0.20 0.13	3.1 2.9	4.5 4.3	0.65	6.5 6.3	0.94	0.7 0.5	0.1	0.1	0.1	0.70 0.35	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES		EUROPEAN PROJECTION	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA				
SOT530-1		MO-153				00-02-24 03-02-18	

Fig 15. Package outline SOT530-1 (TSSOP8)

CBTD3306

All information provided in this document is subject to legal disclaimers.

Dual bus switch with level shifting

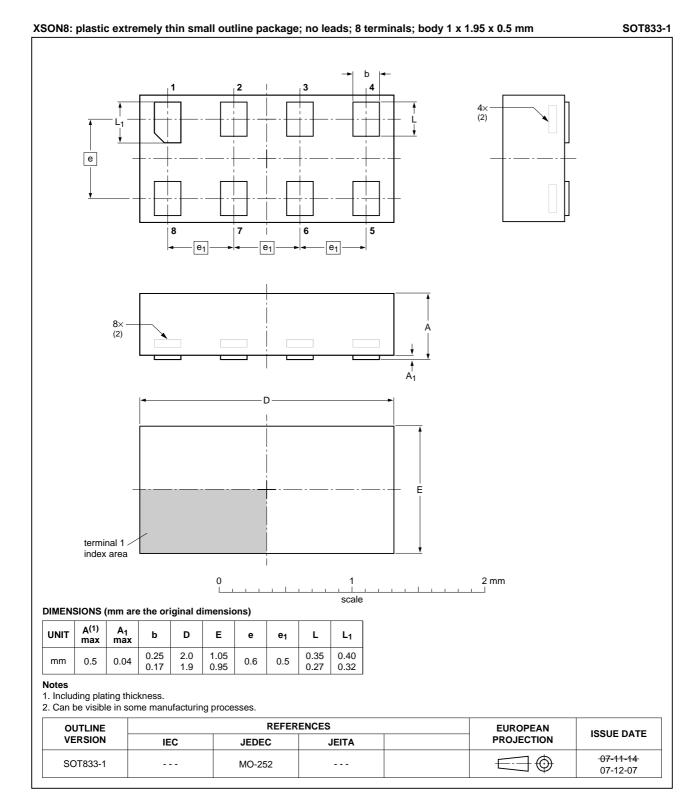


Fig 16. Package outline SOT833-1 (XSON8)

CBTD3306 All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

Dual bus switch with level shifting

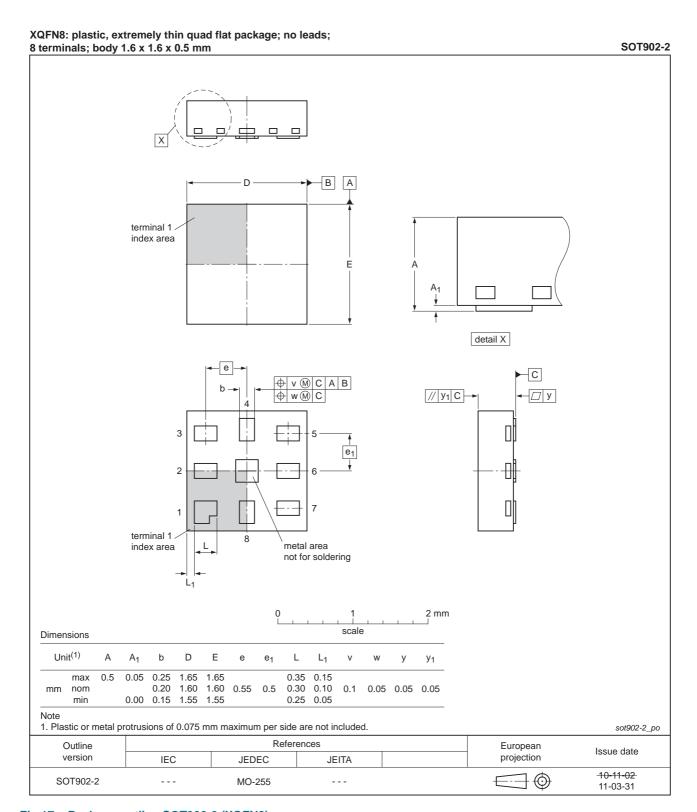


Fig 17. Package outline SOT902-2 (XQFN8)

CBTD3306 All information provided in this document is subject to legal disclaimers.

Dual bus switch with level shifting

15. Abbreviations

Table 11. Abbreviations

Acronym	Description
CDM	Charged Device Model
ESD	ElectroStatic Discharge
FET	Field Effect Transistor
НВМ	Human Body Model
PRR	Pulse Rate Repetition
TTL	Transistor-Transistor Logic

16. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
CBTD3306 v.8	20120501	Product data sheet	-	CBTD3306 v.7
Modifications:	 For type nur 	mber CBTD3306GM the SO	T code has changed to S	OT902-2.
CBTD3306 v.7	20120103	Product data sheet	-	CBTD3306 v.6
Modifications:	 Marking cod 	e for type number CBTD33	06D changed.	
CBTD3306 v.6	20111121	Product data sheet	-	CBTD3306 v.5
Modifications:	 Legal pages 	updated.		
CBTD3306 v.5	20110428	Product data sheet	-	CBTD3306 v.4
CBTD3306 v.4	20100325	Product data sheet	-	CBTD3306 v.3
CBTD3306 v.3	20100223	Product data sheet	-	CBTD3306 v.2
CBTD3306 v.2	20091015	Product data sheet	-	CBTD3306 v.1
CBTD3306 v.1	20011108	Product data	-	-

Dual bus switch with level shifting

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

CBTD3306

All information provided in this document is subject to legal disclaimers.

Dual bus switch with level shifting

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Dual bus switch with level shifting

19. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Marking 1
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
10.1	Typical pass voltage graphs 5
11	Dynamic characteristics
12	Waveforms
13	Test information 9
14	Package outline 10
15	Abbreviations14
16	Revision history
17	Legal information
17.1	Data sheet status
17.2	Definitions
17.3	Disclaimers
17.4	Trademarks16
18	Contact information 16
19	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8 74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG 74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR 74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115 TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK