

APT42F50B APT42F50S

500V, 42A, 0.13Ω Max, t_{rr}, ≤260ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

APT42F50B

APT42F50S

Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
L	Continuous Drain Current @ T _C = 25°C	42	
'D	Continuous Drain Current @ T _C = 100°C	27	А
I _{DM}	Pulsed Drain Current ^①	135	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	930	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	21	Α

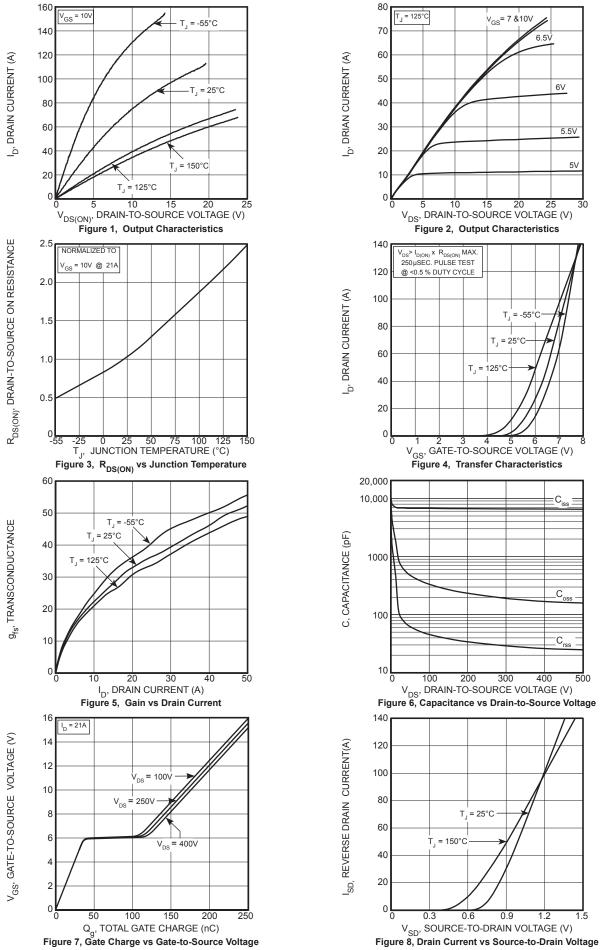
Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			625	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.20	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	- °C	
T _L	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.22		OZ	
			6.2		g	
Torque	Mounting Torque (TO-247 Package), 6-32 or M3 screw			10	in·lbf	
				1.1	N·m	

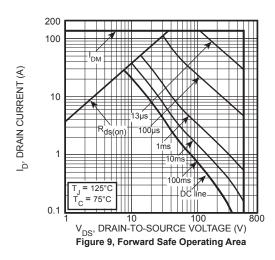
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$		500			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.60		V/°C
$R_{DS(on)}$	Drain-Source On Resistance [®]	V _{GS} = 10V, I _D = 21A			0.11	0.13	Ω
$V_{GS(th)}$	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 1 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
_	Zero Gate Voltage Drain Current	V _{DS} = 500V	T _J = 25°C			250	μA
DSS		V _{GS} = 0V	T _J = 125°C			1000]
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

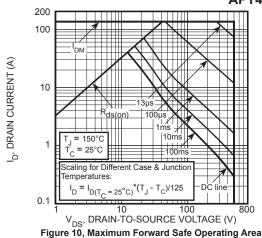
Dynamic Characteristics

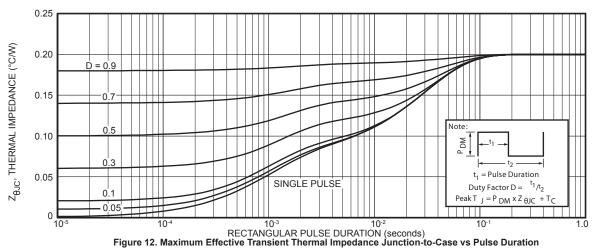
T₁ = 25°C unless otherwise specified


Ty = 20 C diffes Specified						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 21A		32		S
C _{iss}	Input Capacitance	V 0V V 05V		6810		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		90		
C _{oss}	Output Capacitance	1 111112		735		
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 233V		425		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		215		
Q_g	Total Gate Charge	V - 0 to 40V - 04A		170		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 21A,$ $V_{DS} = 250V$		38		nC
Q _{gd}	Gate-Drain Charge	V _{DS} - 250V		80		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		29		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 21A		35		ne
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 4.7\Omega^{\textcircled{6}}, V_{GG} = 15V$		80		ns
t _f	Current Fall Time			26		

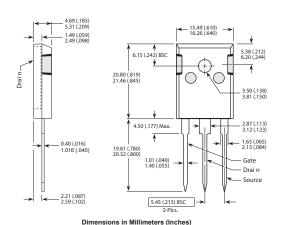
Source-Drain Diode Characteristics

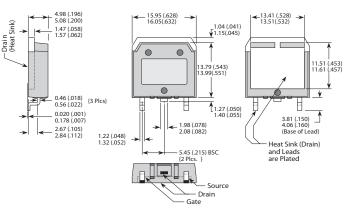

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	showing the))		42	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	'		135	A
V _{SD}	Diode Forward Voltage	$I_{SD} = 21A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.0	V
t _{rr}	Reverse Recovery Time	T _J = 25°C		225	260	no
rr		T _J = 125°C		400	480	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 21A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		1.00		
G _{rr}		$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$		2.50		μC
1	Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$		9.1		Α
'rrm		T _J = 125°C		12.9		_ ^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 21A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 333V$, $T_J = 125^{\circ}C$			20	V/ns


- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 4.22mH, $R_G = 25\Omega$, $I_{AS} = 21A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -1.84E-7/V_{DS}^2 + 3.75E-8/V_{DS} + 1.05E-10.
- \bigcirc R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)


Microsemi reserves the right to change, without notice, the specifications and information contained herein.

50-8084 Rev F 8-2011




TO-247 (B) Package Outline

@1 SAC: Tin, Silver, Copper

D³PAK Package Outline

@3 100% Sn Plated

Dimensions in Millimeters (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3