
ROHS V

Typical Applications

The HMC230MS8 / HMC230MS8E is ideal for:

- Cellular
- PCS, ISM, MMDS
- WLL Handset
- Base Station Infrastructure

Functional Diagram

HMC230MS8 / 230MS8E

4 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.75 - 2.0 GHz

Features

4 dB LSB Steps to 28 dB Single Positive Control Per Bit

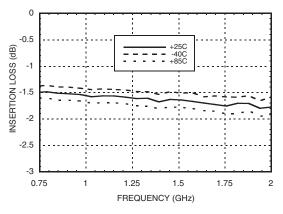
±0.5 dB Typical Bit Error

Pin - For - Pin Replacement to AA100-59 Digital Attenuator

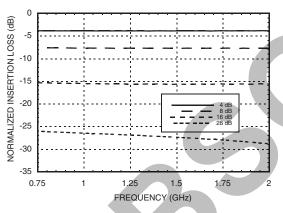
General Description

The HMC230MS8 & HMC230MS8E are broadband 3 - bit positive control GaAs IC digital attenuators in 8 lead MSOP surface mount plastic packages. Covering 0.75 to 2 GHz, the insertion loss is typically less than 2 dB. The attenuator bit values are 4 (LSB), 8, and 16 dB for a total attenuation of 28 dB. Accuracy is excellent at ± 0.5 dB typical with an IIP3 of up to +48 dBm. Three bit control voltage inputs, toggled between 0 and +3 to +5 volts, are used to select each attenuation state at less than 50 uA each. A single Vdd bias of +3 to +5 volts applied through an external 5K Ohm resistor is required.

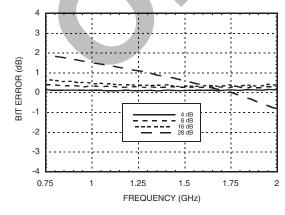
Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vdd = +3V to +5V & VctI = 0/Vdd (Unless Otherwise Stated)


Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.75 - 1.7 GHz 1.7 - 2.0 GHz		1.6 1.8	1.8 2.1	dB dB
Attenuation Range		0.75 - 2.0 GHz		28		dB
Return Loss (RF1 & RF2, All Atten. States)		0.75 - 1.7 GHz 1.7 - 2.0 GHz	10 13	13 16		dB dB
Attenuation Accuracy: (Reference to Insertion Loss)						
4, 8, 12, 16, 20 dB States 24, 28 dB States All Attenuation States		0.75 - 1.4 GHz 0.75 - 1.4 GHz 1.40 - 2.0 GHz	\pm 0.3 + 3% of Atten. Setting Max \pm 0.4 + 6% of Atten. Setting Max \pm 0.3 + 3% of Atten. Setting Max		dB dB dB	
Input Power for 0.1 dB Compression	5V 3V	0.75 - 2.0 GHz		20 19		dBm dBm
Input Third Order Intercept (Two-Tone Input Power = 0 dBm Each)	5V 3V	0.75 - 2.0 GHz		46 45		dBm dBm
Switching Characteristics						
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		0.75 - 2.0 GHz		560 600		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

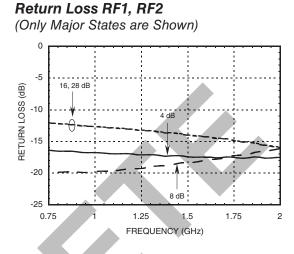


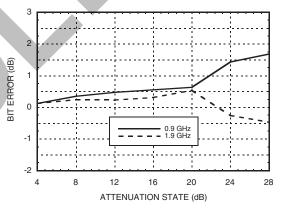
Insertion Loss



Normalized Attenuation

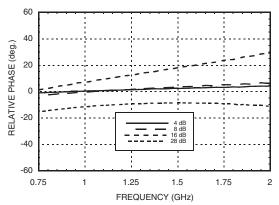
(Only Major States are Shown)





HMC230MS8 / 230MS8E

4 dB LSB GaAs IC 3-BIT DIGITAL ATTENUATOR, 0.75 - 2.0 GHz



Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)

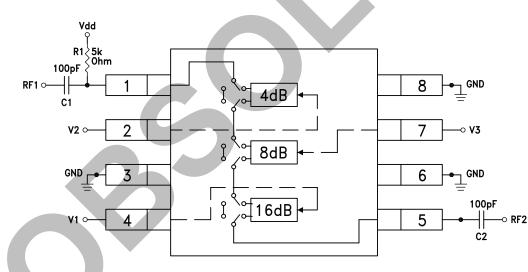
Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40 to +85 deg C).

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC230MS8 / 230MS8E

4 dB LSB GaAs IC 3-BIT DIGITAL ATTENUATOR, 0.75 - 2.0 GHz

Control & Bias Voltages


State	Bias Condition	
Low	0 to +0.2Vdc @ 20 uA Max	
High	High Vdd ±0.2V @ 50 uA Typ	
Note: Vdd = $+3V$ to $+5V \pm 0.2V$		

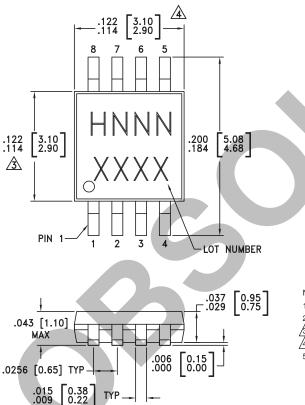
Truth Table

Control Voltage Input		e Input	Attonuction Sotting	
V1 16 dB	V2 4 dB	V3 8 dB	Attenuation Setting RF1 - RF2	
High	High	High	Reference I.L.	
High	Low	High	4 dB	
High	High	Low	8 dB	
Low	High	High	16 dB	
Low	Low	Low	28 dB Max. Atten.	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose $C1 = C2 = 100 \sim 300 \text{ pF}$ to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit through either PIN 1 or PIN 5.



ROHS EARTH FRIENDLY

Absolute Maximum Ratings

Control Voltage (V1, V2, V3)	Vdd to +0.5 Vdc
Bias Voltage (Vdd)	+8.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.75 - 2 GHz)	+26 dBm

Outline Drawing

- NOTES: 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].

.009 .003 0.22 0.08

.031 0.80 .016 0.40

- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC230MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H230 XXXX
HMC230MS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H230</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

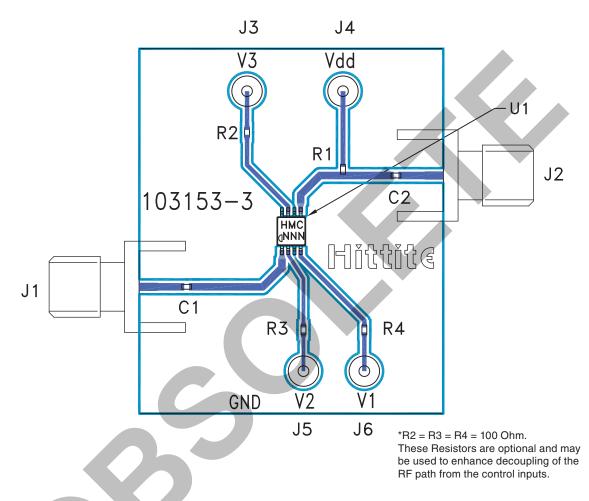
[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

4 dB LSB GaAs IC 3-BIT DIGITAL ATTENUATOR, 0.75 - 2.0 GHz


HMC230MS8 / 230MS8E

v02.0505

4 dB LSB GaAs IC 3-BIT DIGITAL ATTENUATOR, 0.75 - 2.0 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 103155^[1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J3 - J6	DC Pin		
R1	5k Ohm Resistor, 0402 Chip		
R2, R3, R4	100 Ohm Resistor, 0402 Chip		
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation		
U1	HMC230MS8 / HMC230MS8E Digital Attenuator		
PCB [2]	103153 Evaluation PCB 1.25" x 1.5"		

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC230MS8 / 230MS8E

v02.0505

Notes:

4 dB LSB GaAs IC 3-BIT DIGITAL ATTENUATOR, 0.75 - 2.0 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Attenuators category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAATCC0010 HMC305SLP4ETR MAAD-009195-000100 MAADSS0012TR TGL4201-02 ATN3590-15 20-50TPC D10AA5Z4 HMC346LP3TR 18AH-01 18AH-03 18AH-08 ATN3590-09 20-50RP MASW-008322-000000 MAAVSS0004 PCAF-10 EXB-24AT9AR5X ATN3580-06 HMC539ALP3ETR HMC291SETR HMC941A-SX HMC1119LP4METR F1977NBGI8 HMC802ALP3ETR HMC-VVD106-SX WA04P006XCTL SKY12408-321LF TGL2226 WA04P005XBTL EXB-14AT3AR3X HMC-VVD104-SX SKY12236-11 MAATSS0018TR-3000 HMC656-SX WA04P001XBTL MAAV-007941-TR3000 WA04P004XBTL HMC425ALP3ETR WA04P002XBTL MAT10010 MAT10040 EXB-24N182JX EXB-24N181JX EXB-24N183JX 20-50TPR HMC941A PAT0816-C-0DB-T5 PAT0816-C-8DB-T5 PAT0816-C-3DB-T5