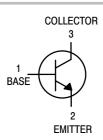
MMBT6428LT1G, MMBT6429LT1G, NSVMMBT6429LT1G

Amplifier Transistors

NPN Silicon


Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

SOT-23 (TO-236) CASE 318 STYLE 6

MAXIMUM RATINGS

Rating	Symbol	6428LT1	6429LT1	Unit
Collector - Emitter Voltage	V_{CEO}	50	45	Vdc
Collector - Base Voltage	V_{CBO}	60	60 55	
Emitter - Base Voltage	V _{EBO}	6.0		Vdc
Collector Current - Continuous	I _C	200		mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C	P _D	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C	P _D	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

MARKING DIAGRAM

XXX = Specific Device Code MMBT6428LT1 - 1KM NSV/MMBT6429LT1 - M1L

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may
vary depending upon manufacturing location.

ORDERING INFORMATION

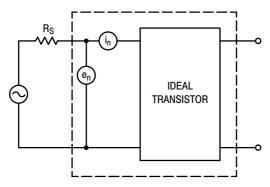
Device	Package	Shipping [†]
MMBT6428LT1G	SOT-23 (Pb-Free)	3000 Tape & Reel
MMBT6429LT1G	SOT-23 (Pb-Free)	3000 Tape & Reel
NSVMMBT6429LT1G	SOT-23 (Pb-Free)	3000 Tape & Reel

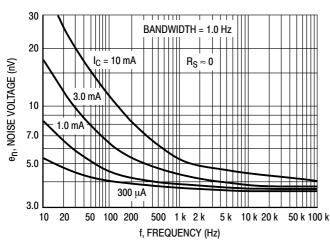
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

${\bf MMBT6428LT1G,\,MMBT6429LT1G,\,NSVMMBT6429LT1G}$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	MMBT6428 MMBT6429 / NSVMMBT6429	V _(BR) CEO	50 45	- -	Vdc	
Collector – Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$ $(I_C = 0.1 \text{ mAdc}, I_E = 0)$	MMBT6428 MMBT6429 / NSVMMBT6429	V _(BR) CBO	60 55	- -	Vdc	
Collector Cutoff Current (V _{CE} = 30 Vdc)		I _{CES}	_	0.1	μAdc	
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		I _{CBO}	_	0.01	μAdc	
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		I _{EBO}	_	0.01	μAdc	
ON CHARACTERISTICS			•	•	•	
DC Current Gain (I _C = 0.01 mAdc, V _{CE} = 5.0 Vdc)	MMBT6428 MMBT6429 / NSVMMBT6429	h _{FE}	250 500	- -	-	
$(I_C = 0.1 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT6428 MMBT6429 / NSVMMBT6429		250 500	650 1250		
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	MMBT6428 MMBT6429 / NSVMMBT6429		250 500	- -		
($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$)	MMBT6428 MMBT6429 / NSVMMBT6429		250 500	- -		
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 0.5 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)		V _{CE(sat)}	- -	0.2 0.6	Vdc	
Base – Emitter On Voltage (I _C = 1.0 mAdc, V _{CE} = 5.0 mAdc)		V _{BE(on)}	0.56	0.66	Vdc	
SMALL-SIGNAL CHARACTERISTICS			•	-	•	
Current – Gain – Bandwidth Product (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	100	700	MHz	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C_{obo}	-	3.0	pF	
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$		C _{ibo}	_	8.0	pF	

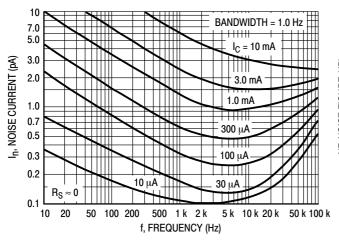



Figure 1. Transistor Noise Model

MMBT6428LT1G, MMBT6429LT1G, NSVMMBT6429LT1G

NOISE CHARACTERISTICS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$


NOISE VOLTAGE

BANDWIDTH = 1.0 Hz 20 en, NOISE VOLTAGE (nV) $R_S \approx 0\,$ f = 10 Hz 10 7.0 5.0 3.0 0.01 0.02 0.1 0.2 0.5 1.0 5.0 0.05 10 IC, COLLECTOR CURRENT (mA)

Figure 2. Effects of Frequency

Figure 3. Effects of Collector Current

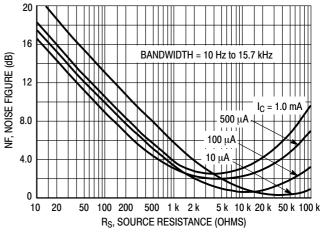
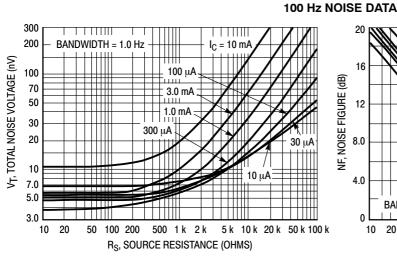



Figure 4. Noise Current

Figure 5. Wideband Noise Figure

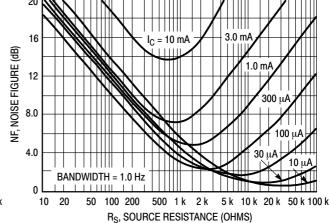


Figure 6. Total Noise Voltage

Figure 7. Noise Figure

MMBT6428LT1G, MMBT6429LT1G, NSVMMBT6429LT1G

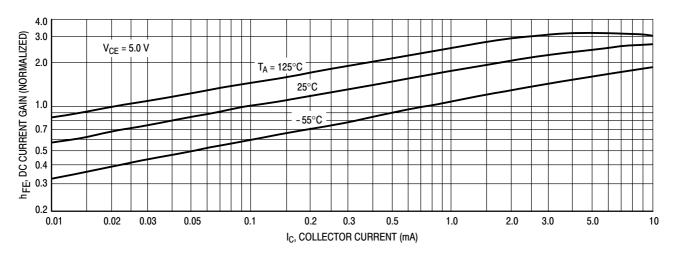


Figure 8. DC Current Gain

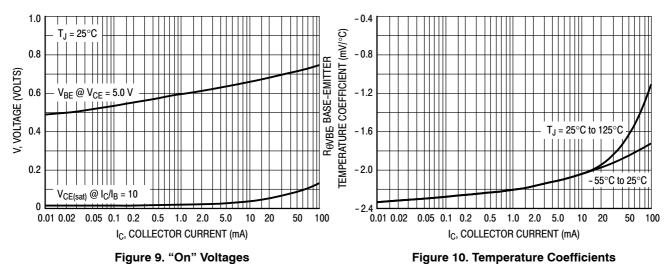
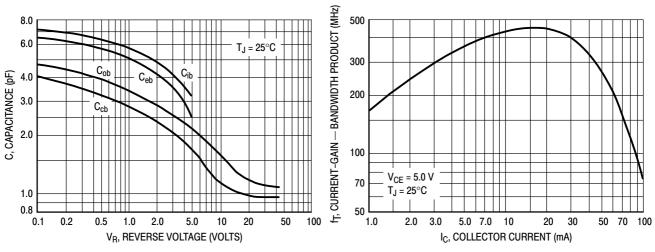


Figure 9. "On" Voltages



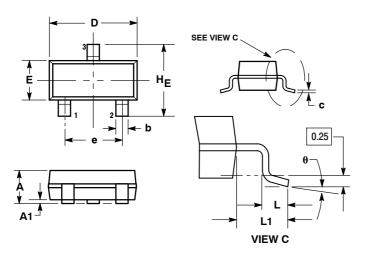

Figure 11. Capacitance

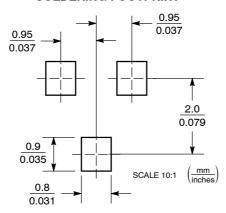
Figure 12. Current-Gain — Bandwidth Product

MMBT6428LT1G, MMBT6429LT1G, NSVMMBT6429LT1G

PACKAGE DIMENSIONS

SOT-23 (TO236) CASE 318-08 ISSUE AP

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 2. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS		INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104
θ	0°		10°	0°		10°

STYLE 6: PIN 1. BASE

- IN 1. BASE 2. EMITTER
- 3. COLLECTOR

SOLDERING FOOTPRINT

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all ap

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B