General Description

The AOZ1092D is a high efficiency, simple to use, 3A buck regulator. The AOZ1092D works from a 4.5 V to 16 V input voltage range, and provides up to 3A of continuous output current with an output voltage adjustable down to 0.8 V .

The AOZ1092D comes in 4×5 DFN-8 packages and is rated over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature range.

Features

- 4.5 V to 16 V operating input voltage range
- $50 \mathrm{~m} \Omega$ internal PFET switch for high efficiency: up to 95%
- Schottky diode is included
- Internal soft start
- Output voltage adjustable to 0.8 V
- 3A continuous output current
- Fixed 500 kHz PWM operation
- Cycle-by-cycle current limit
- Short-circuit protection
- Output over voltage protection
- Thermal shutdown
- Small size 4×5 DFN-8 packages

Applications

- Point of load DC/DC conversion
- PCIe graphics cards
- Set top boxes
- DVD drives and HDD
- LCD panels
- Cable modems
- Telecom/networking/datacom equipment

Typical Application

Figure 1. 3.3V/3A Non-Synchronous Buck Regulator

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ1092DI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DFN -84×5	RoHS

All AOS Products are offering in packaging with Pb-free plating and compliant to RoHS standards.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

Pin Description

Pin Number	Pin Name	
1	$V_{I N}$	Supply voltage input. When $\mathrm{V}_{\text {IN }}$ rises above the UVLO threshold the device starts up.
2	PGND	Power ground. Electrically needs to be connected to AGND.
3	AGND	Reference connection for controller section. Also used as thermal connection for controller section. Electrically needs to be connected to PGND.
4	FB	The FB pin is used to determine the output voltage via a resistor divider between the output and GND.
5	COMP	External loop compensation pin.
6	EN	The enable pin is active HIGH. Connect EN pin to $\mathrm{V}_{\text {IN }}$ if not used. Do not leave the EN pin floating.
7,8	LX	PWM output connection to inductor. Thermal connection for output stage.

Block Diagram

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Parameter	Rating
Supply Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	-0.7 V to $\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$
LX to AGND	-0.3 V to $\mathrm{V}_{1 \mathrm{~N}}+0.3 \mathrm{~V}$
EN to AGND	-0.3 V to 6 V
FB to AGND	-0.3 V to 6 V
COMP to AGND	-0.3 V to 0.3 V
PGND to AGND	$+150^{\circ} \mathrm{C}$
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{S}}\right)$	

Recommend Operating Ratings

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

Parameter	Rating
Supply Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	4.5 V to 16 V
Output Voltage Range	0.8 V to V_{IN}
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance DFN $4 \times 5\left(\Theta_{\mathrm{JA}}\right)$	$53^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$ unless otherwise specified. ${ }^{(3)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IN }}$	Supply Voltage		4.5		16	V
$\mathrm{V}_{\text {UVLO }}$	Input Under-Voltage Lockout Threshold	$V_{\text {IN }}$ Rising $V_{\text {IN }}$ Falling		$\begin{aligned} & 4.00 \\ & 3.70 \end{aligned}$		V
IN	Supply Current (Quiescent)	$\mathrm{l}_{\text {OUT }}=0, \mathrm{~V}_{\mathrm{FB}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}>1.2 \mathrm{~V}$		2	3	mA
IOFF	Shutdown Supply Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		1	10	$\mu \mathrm{A}$
V_{FB}	Feedback Voltage		0.782	0.8	0.818	V
	Load Regulation			0.5		\%
	Line Regulation			0.5		\%
$\mathrm{I}_{\text {FB }}$	Feedback Voltage Input Current				200	nA
ENABLE						
$V_{\text {EN }}$	EN Input Threshold	Off Threshold On Threshold	2.0		0.6	V
$\mathrm{V}_{\mathrm{HYS}}$	EN Input Hysteresis			100		mV
MODULATOR						
f_{0}	Frequency		400	500	600	kHz
$\mathrm{D}_{\text {MAX }}$	Maximum Duty Cycle		100			\%
$\mathrm{D}_{\text {MIN }}$	Minimum Duty Cycle				6	\%
$G_{\text {VEA }}$	Error Amplifier Voltage Gain			500		V/V
$\mathrm{G}_{\text {EA }}$	Error Amplifier Transconductance			200		$\mu \mathrm{A} / \mathrm{V}$
PROTECTION						
ILIM	Current Limit		4		5	A
V_{PR}	Output Over-Voltage Protection Threshold	Off Threshold On Threshold		$\begin{aligned} & 960 \\ & 840 \end{aligned}$		mV
TJ	Over-Temperature Shutdown Limit			150		${ }^{\circ} \mathrm{C}$
t_{ss}	Soft Start Interval			2.2		ms
OUTPUT STAGE						
	High-Side Switch On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 40 \\ & 65 \end{aligned}$	$\begin{aligned} & 50 \\ & 85 \end{aligned}$	$\mathrm{m} \Omega$

Note:
3. Specifications in BOLD indicate an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. These specifications are guaranteed by design.

Typical Performance Characteristics

Circuit of Figure 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.3 \mathrm{~V}$ unless otherwise specified.

Startup to Full Load

$400 \mu \mathrm{~s} / \mathrm{div}$

50\% to 100\% Load Transient

Full Load (CCM) Operation

Full Load to Turn Off

$1 \mathrm{~ms} / \mathrm{div}$

No Load to Turn Off

Typical Performance Characteristics (Continued)
Circuit of Figure 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.3 \mathrm{~V}$ unless otherwise specified.

Efficiency

Thermal Derating Curves

Thermal derating curves for 4×5 DFN-8 package part under typical line and output voltage condition based on EVAL board. Circuit of Figure $1.25^{\circ} \mathrm{C}$ ambient temperature and natural convection (air speed $<50 \mathrm{LFM}$) unless otherwise specified.

Detailed Description

The AOZ1092D is a current-mode step down regulator with integrated high side PMOS switch and low side Schottky diode. It operates from a 4.5 V to 16 V input voltage range and supplies up to 3A of load current. The duty cycle can be adjusted from 6% to 100% allowing a wide range of output voltage. Features include enable control, Power-On Reset, input under voltage lockout, fixed internal soft-start and thermal shut down.

The AOZ1092D is available in 4×5 DFN-8 package.

Enable and Soft Start

The AOZ1092D has internal soft start feature to limit in-rush current and ensure the output voltage ramps up smoothly to regulation voltage. A soft start process begins when the input voltage rises to 4.0 V and voltage on EN pin is HIGH. In soft start process, the output voltage is ramped to regulation voltage in typically 2.2 ms . The 2.2 ms soft start time is set internally.

The EN pin of the AOZ1092D is active high. Connect the EN pin to VIN if enable function is not used. Pull it to ground will disable the AOZ1092D. Do not leave it open. The voltage on EN pin must be above 2.0 V to enable the AOZ1092D. When voltage on EN pin falls below 0.6 V , the AOZ1092D is disabled.

Steady-State Operation

Under steady-state conditions, the converter operates in fixed frequency and Continuous-Conduction Mode (CCM).

The AOZ1092D integrates an internal P-MOSFET as the high-side switch. Inductor current is sensed by amplifying the voltage drop across the drain to source of the high side power MOSFET. Output voltage is divided down by the external voltage divider at the FB pin. The difference of the FB pin voltage and reference is amplified by the internal transconductance error amplifier. The error voltage, which shows on the COMP pin, is compared against the current signal, which is sum of inductor current signal and ramp compensation signal, at PWM comparator input. If the current signal is less than the error voltage, the internal high-side switch is on. The inductor current flows from the input through the inductor to the output. When the current signal exceeds the error voltage, the high-side switch is off. The inductor current is freewheeling through the internal Schottky diode to output.

The AOZ1092D uses a P-Channel MOSFET as the high side switch. It saves the bootstrap capacitor normally
seen in a circuit which is using an NMOS switch. It allows 100% turn-on of the upper switch to achieve linear regulation mode of operation. The minimum voltage drop from $\mathrm{V}_{\text {IN }}$ to V_{O} is the load current times $D C$ resistance of MOSFET plus DC resistance of buck inductor. It can be calculated by equation below:

$$
V_{O-M A X}=V_{I N^{-}} I_{O} \times\left(R_{D S(O N)}+R_{\text {inductor }}\right)
$$

where;
$\mathrm{V}_{\text {O_MAX }}$ is the maximum output voltage,
$\mathrm{V}_{\text {IN }}$ is the input voltage from 4.5 V to 16 V ,
I_{O} is the output current from 0 A to 3 A ,
$R_{D S(O N)}$ is the on resistance of internal MOSFET, the value is between $40 \mathrm{~m} \Omega$ and $70 \mathrm{~m} \Omega$ depending on input voltage and junction temperature, and
$\mathrm{R}_{\text {inductor }}$ is the inductor DC resistance.

Switching Frequency

The AOZ1092D switching frequency is fixed and set by an internal oscillator. The practical switching frequency could range from 400 kHz to 600 kHz due to device variation.

Output Voltage Programming

Output voltage can be set by feeding back the output to the FB pin with a resistor divider network. In the application circuit shown in Figure 1. The resistor divider network includes R_{1} and R_{2}. Usually, a design is started by picking a fixed R_{2} value and calculating the required R_{1} with equation below.

$$
V_{O}=0.8 \times\left(1+\frac{R_{1}}{R_{2}}\right)
$$

Some standard value of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and most commonly used output voltage values are listed in Table 1.

$\mathbf{V}_{\mathbf{0}} \mathbf{(V)}$	$\mathbf{R}_{\mathbf{1}} \mathbf{(k \Omega} \mathbf{)}$	$\mathbf{R}_{\mathbf{2}} \mathbf{(k \Omega} \mathbf{)}$
0.8	1.0	open
1.2	4.99	10
1.5	10	11.5
1.8	12.7	10.2
2.5	21.5	10
3.3	31.1	10
5.0	52.3	10

The combination of R_{1} and R_{2} should be large enough to avoid drawing excessive current from the output, which will cause power loss.

Since the switch duty cycle can be as high as 100%, the maximum output voltage can be set as high as the input voltage minus the voltage drop on upper PMOS and inductor.

Protection Features

The AOZ1092D has multiple protection features to prevent system circuit damage under abnormal conditions.

Over Current Protection (OCP)

The sensed inductor current signal is also used for over current protection. Since AOZ1092D employs peak current mode control, the COMP pin voltage is
proportional to the peak inductor current. The COMP pin voltage is limited to be between 0.4 V and 2.5 V internally. The peak inductor current is automatically limited cycle by cycle.

The cycle by cycle current limit threshold is set between 4 A and 5 A . When the load current reaches the current limit threshold, the cycle by cycle current limit circuit turns off the high side switch immediately to terminate the current duty cycle. The inductor current stop rising. The cycle by cycle current limit protection directly limits inductor peak current. The average inductor current is also limited due to the limitation on peak inductor current. When cycle by cycle current limit circuit is triggered, the output voltage drops as the duty cycle decreasing.

The AOZ1092D has internal short circuit protection to protect itself from catastrophic failure under output short circuit conditions. The FB pin voltage is proportional to the output voltage. Whenever FB pin voltage is below 0.2 V , the short circuit protection circuit is triggered. As a result, the converter is shut down and hiccups at a frequency equals to $1 / 8$ of normal switching frequency. The converter will start up via a soft start once the short circuit condition disappears. In short circuit protection mode, the inductor average current is greatly reduced because of the low hiccup frequency.

Power-On Reset (POR)

A power-on reset circuit monitors the input voltage. When the input voltage exceeds 4 V , the converter starts operation. When input voltage falls below 3.7 V , the converter will be shut down.

Output Over Voltage Protection (OVP)

The AOZ1092D monitors the feedback voltage: when the feedback voltage is higher than 960 mV , it immediate turns-off the PMOS to protect the output voltage overshoot at fault condition. When feedback voltage is lower than 840 mV , the PMOS is allowed to turn on in the next cycle.

Thermal Protection

An internal temperature sensor monitors the junction temperature. It shuts down the internal control circuit and high side PMOS if the junction temperature exceeds $150^{\circ} \mathrm{C}$.

Application Information

The basic AOZ1092D application circuit is shown in Figure 1. Component selection is explained below.

Input Capacitor

The input capacitor must be connected to the V_{IN} pin and PGND pin of the AOZ1092D to maintain steady input voltage and filter out the pulsing input current. The voltage rating of input capacitor must be greater than maximum input voltage plus ripple voltage.

The input ripple voltage can be approximated by equation below:

$$
\Delta V_{I N}=\frac{I_{O}}{f \times C_{I N}} \times\left(1-\frac{V_{O}}{V_{I N}}\right) \times \frac{V_{O}}{V_{I N}}
$$

Since the input current is discontinuous in a buck converter, the current stress on the input capacitor is another concern when selecting the capacitor. For a buck circuit, the RMS value of input capacitor current can be calculated by:

$$
I_{C I N_{-} R M S}=I_{O} \times \sqrt{\frac{V_{O}}{V_{I N}}\left(1-\frac{v_{O}}{v_{I N}}\right)}
$$

if let m equal the conversion ratio:
$\frac{V_{O}}{V_{I N}}=m$
The relationship between the input capacitor RMS current and voltage conversion ratio is calculated and shown in Figure 2 below. It can be seen that when V_{O} is half of $\mathrm{V}_{\mathbb{I N}^{N}}, \mathrm{C}_{\mathrm{IN}}$ is under the worst current stress. The worst current stress on C_{IN} is $0.5 \times \mathrm{I}_{\mathrm{O}}$.

Figure 2. I ${ }_{\text {CIN }}$ vs. Voltage Conversion Ratio

For reliable operation and best performance, the input capacitors must have current rating higher than $\mathrm{I}_{\text {CIN_RMS }}$ at worst operating conditions. Ceramic capacitors are preferred for input capacitors because of their low ESR and high ripple current rating. Depending on the application circuits, other low ESR tantalum capacitor or aluminum electrolytic capacitor may also be used. When selecting ceramic capacitors, X5R or X7R type dielectric ceramic capacitors are preferred for their better temperature and voltage characteristics. Note that the ripple current rating from capacitor manufactures are based on certain amount of life time. Further de-rating may be necessary for practical design requirement.

Inductor

The inductor is used to supply constant current to output when it is driven by a switching voltage. For given input and output voltage, inductance and switching frequency together decide the inductor ripple current, which is:

$$
\Delta I_{L}=\frac{V_{O}}{f \times L} \times\left(1-\frac{V_{O}}{V_{I N}}\right)
$$

The peak inductor current is:

$$
I_{\text {Lpeak }}=I_{O}+\frac{\Delta I_{L}}{2}
$$

High inductance gives low inductor ripple current but requires larger size inductor to avoid saturation. Low ripple current reduces inductor core losses. It also reduces RMS current through inductor and switches, which results in less conduction loss.

When selecting the inductor, make sure it is able to handle the peak current without saturation even at the highest operating temperature.

The inductor takes the highest current in a buck circuit. The conduction loss on inductor needs to be checked for thermal and efficiency requirements.

Surface mount inductors in different shape and styles are available from Coilcraft, Elytone and Murata. Shielded inductors are small and radiate less EMI noise. But they cost more than unshielded inductors. The choice depends on EMI requirement, price and size.

Table 2 lists some inductors for typical output voltage design.

Table 2.

V $_{\text {OUT }}$	L1	Manufacturer
5.0 V	Shielded, $6.8 \mu \mathrm{H}$ MSS1278-682MLD	Coilcraft
	Shielded, $6.8 \mu \mathrm{H}$ MSS1260-682MLD	
	Un-shielded, $4.7 \mu \mathrm{H}$ DO3316P-472MLD	Coilcraft
	Shielded, $4.7 \mu \mathrm{H}$ DO1260-472NXD	
	Shielded, 3.3 ET553-3R3	ELYTONE
1.8 V	Shielded, 2.2 $\mu \mathrm{H}$ ET553-2R2	ELYTONE
	Un-shielded, 3.3 DOH316P-222MLD	Coilcraft
	Shielded, $2.2 \mu \mathrm{H}$ MSS1260-222NXD	

Output Capacitor

The output capacitor is selected based on the DC output voltage rating, output ripple voltage specification and ripple current rating.

The selected output capacitor must have a higher rated voltage specification than the maximum desired output voltage including ripple. De-rating needs to be considered for long term reliability.

Output ripple voltage specification is another important factor for selecting the output capacitor. In a buck converter circuit, output ripple voltage is determined by inductor value, switching frequency, output capacitor value and ESR. It can be calculated by the equation below:

$$
\Delta V_{O}=\Delta I_{L} \times\left(E S R_{C O}+\frac{1}{8 \times f \times C_{O}}\right)
$$

where,
C_{O} is output capacitor value, and
$E S R_{C O}$ is the equivalent series resistance of the output capacitor.

When low ESR ceramic capacitor is used as output capacitor, the impedance of the capacitor at the switching frequency dominates. Output ripple is mainly caused by capacitor value and inductor ripple current. The output ripple voltage calculation can be simplified to:

$$
\Delta V_{O}=\Delta I_{L} \times\left(\frac{1}{8 \times f \times C_{0}}\right)
$$

If the impedance of ESR at switching frequency dominates, the output ripple voltage is mainly decided by capacitor ESR and inductor ripple current. The output ripple voltage calculation can be further simplified to:

$$
\Delta V_{O}=\Delta I_{L} \times E S R_{C O}
$$

For lower output ripple voltage across the entire operating temperature range, X5R or X7R dielectric type of ceramic, or other low ESR tantalum capacitor or aluminum electrolytic capacitor may also be used as output capacitors.

In a buck converter, output capacitor current is continuous. The RMS current of output capacitor is decided by the peak to peak inductor ripple current. It can be calculated by:

$$
I_{C O-R M S}=\frac{\Delta I_{L}}{\sqrt{12}}
$$

Usually, the ripple current rating of the output capacitor is a smaller issue because of the low current stress. When the buck inductor is selected to be very small and inductor ripple current is high, output capacitor could be overstressed.

Loop Compensation

The AOZ1092D employs peak current mode control for easy use and fast transient response. Peak current mode control eliminates the double pole effect of the output L\&C filter. It greatly simplifies the compensation loop design.

With peak current mode control, the buck power stage can be simplified to be a one-pole and one-zero system in frequency domain. The pole is dominant pole and can be calculated by:

$$
f_{p 1}=\frac{1}{2 \pi \times C_{O} \times R_{L}}
$$

The zero is a ESR zero due to output capacitor and its ESR. It is can be calculated by:

$$
f_{Z 1}=\frac{1}{2 \pi \times C_{O} \times E S R_{C O}}
$$

where;
C_{O} is the output filter capacitor,
R_{L} is load resistor value, and
$E S R_{C O}$ is the equivalent series resistance of output capacitor.

The compensation design is actually to shape the converter close loop transfer function to get desired gain and phase. Several different types of compensation network can be used for the AOZ1092D. For most cases, a series capacitor and resistor network connected to the COMP pin sets the pole-zero and is adequate for a stable high-bandwidth control loop.

In the AOZ1092D, FB pin and COMP pin are the inverting input and the output of internal transconductance error amplifier. A series R and C compensation network connected to COMP provides one pole and one zero. The pole is:

$$
f_{p 2}=\frac{G_{E A}}{2 \pi \times C_{C} \times G_{V E A}}
$$

where;
G_{EA} is the error amplifier transconductance, which is 200×10^{-6} A/V,
$\mathrm{G}_{\text {VEA }}$ is the error amplifier voltage gain, which is $500 \mathrm{~V} / \mathrm{V}$, and C_{C} is cthe compensation capacitor.

The zero given by the external compensation network, capacitor C_{C} and resistor R_{C}, is located at:

$$
f_{Z 2}=\frac{1}{2 \pi \times C_{C} \times R_{C}}
$$

To design the compensation circuit, a target crossover frequency f_{C} for close loop must be selected. The system crossover frequency is where control loop has unity gain. The crossover frequency is also called the converter bandwidth. Generally a higher bandwidth means faster response to load transient. However, the bandwidth should not be too high because of system stability concern. When designing the compensation loop, converter stability under all line and load condition must be considered.

Usually, it is recommended to set the bandwidth to be less than 1/10 of switching frequency. The AOZ1092D operates at a fixed switching frequency range from 400 kHz to 600 kHz . It is recommended to choose a crossover frequency less than 50 kHz .
$f_{C}=50 \mathrm{kHz}$
The strategy for choosing R_{C} and C_{C} is to set the cross over frequency with R_{C} and set the compensator zero with C_{C}. Using selected crossover frequency, f_{C}, to calculate R_{C} :

$$
R_{C}=f_{C} \times \frac{V_{O}}{V_{F B}} \times \frac{2 \pi \times C_{O}}{G_{E A} \times G_{C S}}
$$

where;
where f_{C} is desired crossover frequency,
V_{FB} is 0.8 V ,
G_{EA} is the error amplifier transconductance, which is $200 \times 10^{-6} \mathrm{~A} / \mathrm{V}$, and
G_{CS} is the current sense circuit transconductance, which is $6.86 \mathrm{~A} / \mathrm{V}$

The compensation capacitor C_{C} and resistor R_{C} together make a zero. This zero is put somewhere close to the dominate pole $f_{p 1}$ but lower than $1 / 5$ of selected crossover frequency. C_{C} can is selected by:

$$
C_{C}=\frac{1.5}{2 \pi \times R_{C} \times f_{p 1}}
$$

The above equation can be simplified to:

$$
C_{C}=\frac{C_{O} \times R_{L}}{R_{3}}
$$

An easy-to-use application software which helps to design and simulate the compensation loop can be found at www.aosmd.com.

Thermal Management and Layout Consideration

In the AOZ1092D buck regulator circuit, high pulsing current flows through two circuit loops. The first loop starts from the input capacitors, to the V_{IN} pin, to the LX pins, to the filter inductor, to the output capacitor and load, and then return to the input capacitor through ground. Current flows in the first loop when the high side switch is on. The second loop starts from inductor, to the output capacitors and load, to the anode of Schottky diode, to the cathode of Schottky diode. Current flows in the second loop when the low side diode is on.

In PCB layout, minimizing the two loops area reduces the noise of this circuit and improves efficiency. A ground plane is strongly recommended to connect input capacitor, output capacitor, and PGND pin of the AOZ1092D.

In the AOZ1092D buck regulator circuit, the major power dissipating components are the AOZ1092D and output inductor. The total power dissipation of converter circuit can be measured by input power minus output power.

$$
P_{\text {total_loss }}=V_{I N} \times I_{I N}-V_{O} \times I_{O}
$$

The power dissipation of inductor can be approximately calculated by output current and DCR of the inductor.

$$
P_{\text {inductor_loss }}=I_{O}^{2} \times R_{\text {inductor }} \times 1.1
$$

The actual junction temperature can be calculated with power dissipation in the AOZ1092D and thermal impedance from junction to ambient.

$$
T_{\text {junction }}=\left(P_{\text {total_loss }}-P_{\text {inductor_loss }}\right) \times \Theta_{J A}+T_{a m b}
$$

The maximum junction temperature of AOZ1092D is $150^{\circ} \mathrm{C}$, which limits the maximum load current capability. Please see the thermal de-rating curves for maximum load current of the AOZ1092D under different ambient temperature.

The thermal performance of the AOZ1092D is strongly affected by the PCB layout. Extra care should be taken by users during design process to ensure that the IC will operate under the recommended environmental conditions.

Several layout tips are listed below for the best electric and thermal performance. Figure 3 on the next page illustrates a PCB layout example as reference.

1. Do not use thermal relief connection to the V_{IN} and the PGND pin. Pour a maximized copper area to the PGND pin and the $\mathrm{V}_{\text {IN }}$ pin to help thermal dissipation.
2. Input capacitor should be connected to the V_{IN} pin and the PGND pin as close as possible.
3. A ground plane is preferred. If a ground plane is not used, separate PGND from AGND and connect them only at one point to avoid the PGND pin noise coupling to the AGND pin.
4. Make the current trace from $L X$ pins to L to $C o$ to the PGND as short as possible.
5. Pour copper plane on all unused board area and connect it to stable DC nodes, like $\mathrm{V}_{\text {IN }}$, GND or $\mathrm{V}_{\text {OUT }}$.
6. The two LX pins are connected to internal PFET drain. They are low resistance thermal conduction path and most noisy switching node. Connected a copper plane to LX pin to help thermal dissipation. This copper plane should not be too larger otherwise switching noise may be coupled to other part of circuit.
7. Keep sensitive signal trace far away form the LX pins.

Figure 3. AOZ1092D PCB Layout

Package Dimensions, DFN 4x5

Dimensions in millimeters

Symbols	Min.	Nom.	Max.	
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
A3	0.20 REF			
b	0.35	0.40	0.45	
D	5.00 BSC			
D2	1.975	2.125	2.225	
D3	1.625	1.775	1.875	
E	4.00 BSC			
E2	2.500	2.650	2.750	
E3	2.050	2.200	2.300	
E	0.95 BSC			
L	0.600	0.700	0.800	
L1	0.400	0.500	0.600	
R	0.30 REF			
aaa	-	0.15	-	
bbb	-	0.10	-	
ccc	-	0.10	-	
ddd	-	0.08	-	

Dimensions in inches

Symbols	Min.	Nom.	Max.	
A	0.031	0.035	0.039	
A1	0.000	0.001	0.002	
A3	0.008 REF			
b	0.014	0.016	0.018	
D	0.197 BSC			
D2	0.078	0.084	0.088	
D3	0.064	0.070	0.074	
E	0.157 BSC			
E2	0.098	0.104	0.108	
E3	0.081	0.087	0.091	
e	0.037 BSC			
L	0.024	0.028	0.031	
L1	0.016	0.020	0.024	
R	0.012 REF			
aaa	-	0.006	-	
bbb	-	0.004	-	
ccc	-	0.004	-	
ddd	-	0.003	-	

Notes:

1. Dimensions and tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters.
3. The location of the terminal \#1 identifier and terminal numbering convention conforms to JEDEC publication 95 SP-002.
4. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measured in that radius area.
5. Coplanarity applies to the terminals and all other bottom surface metallization.
6. Drawing shown are for illustration only.

Tape Dimensions, DFN 4x5

Tape

Unit: mm

Package	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
DFN 5x4	5.30	4.30	1.20	1.50	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.30
(12 mm)	± 0.10	± 0.10	± 0.10	Min. Typ.	+0.10 / -0	± 0.30	± 0.10	± 0.10	± 0.10	± 0.20	± 0.10	± 0.05

Leader/Trailer and Orientation

Reel Dimensions, DFN 4x5

Package Marking

This data sheet contains preliminary data; supplementary data may be published at a later date. Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for alpha \& omega manufacturer:
Other Similar products are found below :
AOT1608L AO4492 AOD478 AOD468 AOZ6135HI AO5404E AOD482 AO3402 AOTF10B60D AOU3N50 AOZ1235QI-01 AOK42S60L AON7534 AOD3N50 AO4468 AO3401A AO3415 AON2403 AOD4130 AOB290L AOTF42S60L AOTF190A60L AO4404B AON6756 AO4813 AO3414 aot412 AO4818 AOT270AL AO6420 AO3442 AOT2918L AO4616 AO4294 AOZ1020AI AON6250 AON6444 AOZ3011PI AO8820 AOT10N65 AOK20S60L AOK20N60L AON6548 AO3415A AOT470 AOZ8905CI AOK60N30L AOT410L AON6280 AON6414A

