

AS8506C Battery Cell Monitor and Balancer IC

General Description

The AS8506C is a battery management IC dedicated to support cell voltage measurement, monitoring, cell balancing and temperature measurement functions in Li-Ion battery stacks for industrial/consumer/PV battery applications.

Ambient temperature range is from -40°C to 85°C.

It features cell voltage diagnosis with externally adjustable upper and lower cell voltage limits, fast cell voltage capture on request through 12-bit SAR ADC, passive cell balancing by simultaneous comparison of actual cell voltages with a reference cell voltage and temperature measurement on two external NTC sensors through 12-bit ADC.

Cells that are above reference will sequentially be discharged through integrated switches and one external resistor.

There is also an active balancing option AS8506C-A through factory setting to sequentially charge cells which are below reference from an external DC-DC Flyback converter and an integrated low side driver.

The device can be used flexibly for battery stacks up to 7 cells with a minimum stack voltage of 6V and a maximum stack voltage of 32V.

It can be chained to support battery packs of virtually any number of cells in synchronized mode through chained clock and trigger signal.

The status of the battery stack is communicated to outside world through OR'd voltage_ok signal and balance ready signal.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

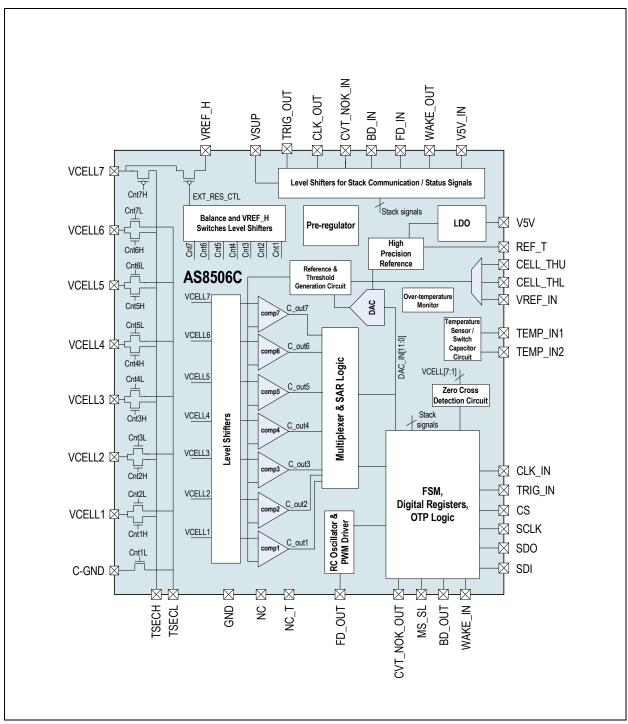
The benefits and features of AS8506C, Battery Cell Monitor and Balancer IC are listed below:

Figure 1: Added Value of Using AS8506C

Benefits	Features
 Reduce filter / synchronization effort Acquired data have same time stamp to inherently generate accurate comparison results independent from load transients 	 Simultaneous cell voltage capture for safe operating area (SOA) monitoring and balancing
 Strongly reduces data communication and data processing and thereby improves EMC robustness 	Autonomous balancing and SOA monitoring
• To compensate accumulative charge differences only. This mitigates cases of occasional wrong balance decisions due to flat OCV characteristic or mismatch in cell temperature	• Autonomous passive balancing in the 100 mA range
• Intrinsic inter module balancing through charge redistribution, efficiency improvement in case of leakage path due to defect induced leakage in particular cells	 Option for active charge balancing with very few external components
For OCV capture, cell impedance calculation, diagnosis	 Absolute cell voltage read out, read out of two temperature sensors
Small form factor, low BOM	 40-pin MLF (6x6) package, very low number of external components

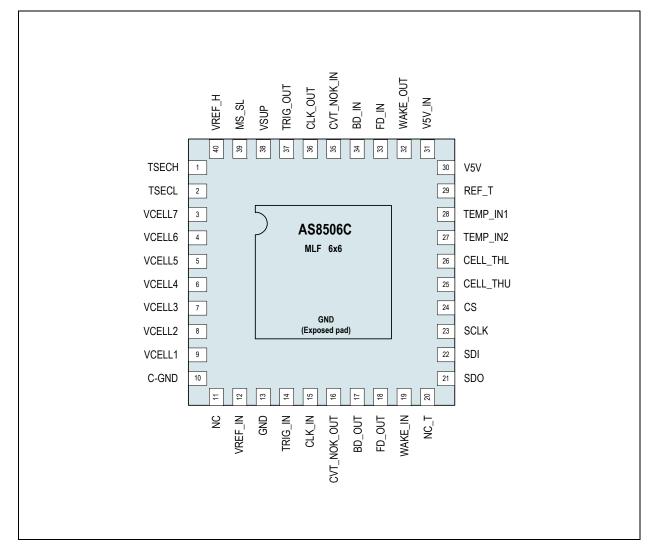
Applications

The applications of AS8506C include:


- The AS8506C is ideal for simultaneous cell monitoring and cell balancing in stacked energy storage systems. Current levels in the 100 mA range enables to compensate accumulative SOC mismatch over the entire cell pack.
- Typical applications are:
 - Li-lon batteries up to 200 cells
 - Energy storage systems to buffer energy from PV panels or for emergency power supplies
 - Battery management for e-scooters and e-bikes

Block Diagram

The functional blocks of this device are shown below:



Pin Assignment

Figure 3: Pin Diagram of AS8506C

Figure 4: Pin Description

Pin Number	Pin Name	Pin Type	Description		
1	TSECH		Flyback converter transformer secondary high side		
2	TSECL		Flyback converter transformer secondary low side		
3	VCELL7		Battery cell 7 high level pin		
4	VCELL6		Battery cell 6 high level pin		
5	VCELL5	Analog input / output	Battery cell 5 high level pin		
6	VCELL4		Battery cell 4 high level pin		
7	VCELL3		Battery cell 3 high level pin		
8	VCELL2		Battery cell 2 high level pin		
9	VCELL1		Battery cell 1 high level pin		
10	C-GND	Power supply input	Battery cell 1 low level pin		
11	NC		Not connected		
12	VREF_IN	Analog input / output	Cell voltage reference value (cell target voltage of battery)		
13	GND	Power supply input	Ground to the IC		
14	TRIG_IN	Digital input	This pin triggers the cell balancing in the device. Short pulse is for receiving status and continuous 'High' for cell balancing. It also acts as a data line during 3-wire communication.		
15	CLK_IN		Clock input pin in the Slave device. This pin also acts as a clock during 3-wire communication. Scan clock in scan mode.		
16	CVT_NOK_OUT		This pin alerts when the cell voltage or the device/cell temperature is not within limits. During 3-wire communication, the CRC error is indicated on this pin. The internal device cell voltage or temperature status is ORed with CVT_NOK_IN on this pin.		
17	BD_OUT	Digital output	The 'device internal balance done' and 'balance done from above device' are ANDed on this pin. This pin in Master device indicates the complete system balance done. During address allocation process, this pin will be 'High' if BD_IN is 'High'.		
18	FD_OUT		Flyback converter gate/opto coupler drive (pad is push-pull type) can drive up to 12mA.		

Pin Number	Pin Name	Pin Type	Description		
19	WAKE_IN	Digital input with pull-up	The wake pulse on this pin brings the IC into NORMAL mode. This pin has a pull-up resistor to the internal regulator. Should be driven with an open drain or external NMOS.		
20	NC_T	Analog input / output	Not connected. Only used in Test mode		
21	SDO	Digital output	SPI data out		
22	SDI	Digital input	SPI data in		
23	SCLK	Digital input	SPI clock		
24	CS	Digital input with pull-up	SPI chip select		
25	CELL_THU		Cell voltage upper threshold		
26	CELL_THL		Cell voltage lower threshold		
27	TEMP_IN2	Analog input /	Temperature input2 to the IC (NTC input; if NTC is not connected, then should be connected to GND with 1K resistor)		
28	TEMP_IN1	output	Temperature input1 to the IC (NTC input; if NTC is not connected, then should be connected to GND with 1K resistor)		
29	REF_T		Supply to temperature sensor (Reference voltage to DAC and ADC)		
30	V5V	Power supply	LDO 5V output		
31	V5V_IN	input	Supply to the bottom IC from the cascaded top IC		
32	WAKE_OUT	Digital output open drain	Open drain o/p on the VSUP+5V domain. WAKE_IN information will be transmitted to top device		
33	FD_IN		Flyback converter gate drive input in daisy chain connection. (If FD_IN is 'high' then FD_OUT will be PWM o/p in balance mode)		
34	BD_IN	Digital input	In cell stack system, the device gets balance done status of above device. During address allocation process if this pin is 'High', then the device address is decremented by '1'		
35	CVT_NOK_IN		Indicates cell voltage or temperature status of above device		

Pin Number	Pin Name	Pin Type	Description		
36	CLK_OUT		This pin propagates the clock to next device in the stack system. In case of Master device internal RC clock is transmitted on this pin to Slave device		
37	TRIG_OUT	Digital output	This pin transmits the data fromTRIG_IN for balance and measurement phase. This pin is also used for propagating the data information to next device in stack system in SPI3		
38	VSUP	Power supply input	Supply to the IC		
39	MS_SL	Digital input	This pin informs the device whether it should act as the Master or Slave. If this pin is connected to GND, then device will act as Master. If this pin is connected to VSUP then device will act as Slave		
40	VREF_H	Analog input / output	High sides PMOS switch for external resistive divider. Input to VREF_IN can be taken from external resistive divider in one of the options		

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5: Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Max	Units	Comments					
	Electrical Parameters										
V _{VSUP}	Voltage at positive supply pin	-0.3		42	V	VSUP pin					
V _{GND}	Voltage at negative supply pin	-0.3		0	V	GND, C-GND; Reference potential					
V _{V5V_IN}	Voltage at high side supply	-0.3		VSUP + 0.3	V	MS_SL,VREF_H, TSECH and TSECL					
VSUP + V5V_IN	High side supply from top device	VSUP - 0.3		VSUP + 5.5	V	TRIG_OUT, CLK_OUT, CVT_NOK_IN, FD_IN, BD_ IN, WAKE_OUT					
V _{V5V}	Voltage at on LDO o/p pins	-0.3		7	V	V5V pin					
V _{ESD}	Voltage on 5V pins	-0.3		V5V+0.3	V	All pins expect VSUP, VCELL1, VCELL2, VCELL3, VCELL4, VCELL5, VCELL6, VCELL7, MS_SL, WAKE_IN					
VCELL1 to VCELL7	Voltage on pins VCELL1, VCELL2, VCELL3, VCELL4, VCELL5, VCELL6, VCELL7	-0.3		7	V	Applied cell voltages					
I _{SCR}	Latch-up Immunity	-100		+100	mA						

Symbol	Parameter	Min	Тур	Max	Units	Comments					
Electrostatic Discharge											
	Electrostatic		±2			VSUP, VREF_IN, SDI, SDO, CS, SCLK, CELL_THU, CELL_THL, TEMP_IN1, TEMP_IN2, REF_T, V5V, V5V_IN, MS_SL, VREF_H, NC_T					
ESD _{HBM}	discharge voltage HBM standard ⁽¹⁾		±4		kV	GND, C-GND, CELL1 – CELL7 (Cell-voltage pins,), TSECH, TSECL, TRIG_IN, TRIG_OUT, CLK_IN, CLK_ OUT, CVT_NOK_IN, CVT_ NOK_OUT, WAKE_IN, WAKE_OUT, FD_IN, FD_ OUT, BD_IN and BD_OUT					
		Continuo	us Powe	er Dissipation							
P _{tot}	Maximum power dissipation			1	W						
	Tem	perature Rai	nges and	d Storage Con	ditions						
T _{strg}	Storage temperature	-55		150	°C						
R _{thj_36}	Thermal resistance package		30		∘C/W						
T _{BODY}	Package body temperature			260	°C	Norm: IPC/JEDEC J-STD-020 ⁽²⁾					
MSL	Moisture Sensitivity Level		3			Maximum floor life time of 168h					

Note(s):

1. Human body model: $R = 1.5k\Omega$; C = 100pF; JS-001-2014.

2. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices".

Typical Operating Characteristics

All defined tolerances for external components in this specification need to be assured over the whole operation conditions range and also over lifetime.

Figure 6: Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Note
VSUP	Positive supply voltage	6		32	V	Normal operating condition
VSS	Negative supply voltage	-0.3		0	V	With reference to all the voltages
T _{AMB}	Ambient temperature	-40		85	۰C	Maximum junction temperature (T _J) 115°C
	Supply current, NORMAL mode	2	3	6	mA	VSUP=32V, in <i>NORMAL</i> mode
I _{SUPP, nom}	Supply current, <i>NORMAL</i> mode, With External Components	15	20	40	mA	VSUP=32V, in the balancing phase with stack connection (50% PWM duty cycle)
I _{SUPP, sleep}	Supply current, <i>SLEEP</i> mode	10	17	35	μΑ	

Electrical Characteristics

Device Level Specifications

-40°C < Tj < 115°C

Figure 7: Device Level Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Note
Vcell_in	Cell Input voltage measurement	1.8		4.5	v	
ADC/DAC	ADC/DAC Reference	4.485	4.5	4.515	V	0 hour, specification does not include solder stress / board stress effects
DAC_error	Error of the DAC		2		mV	0.1% error because of the DAC/Guaranteed by design
Com_off	Error because of the comparator resolution		1		mV	Guaranteed by design
Sign_path_accuracy	Signal path accuracy		±5	±15	mV	Typical value is from the lab evaluation data. 0 hour accuracy, specification does not include solder stress / board stress effects
TINITIALIZATION	Initialization time			50	ms	After Initialization, the system will go to sleep mode and waits for wake signal
T _{WAKE-UP}	Wake up time from the Wake signal to system wait mode			75	ms	After wake signal, device enters into wait mode and stays for two seconds for TRIG_IN signal, if no TRIG_IN event occurs, device goes to sleep mode
Tmeas	Cell voltage and Temperature measurement time		16		ms	At10KHz clock time
Tspi3_read5k	SPI3 read time for		13.6			At 5KHz clock time
Tspi3_read20k	single channel measurement		3.4		ms	At 20KHz clock time
Tspi3_read40k	measurement		1.7			At 40KHz clock time

Low Dropout Regulator (5V Output LDO)

 $-40^{\circ}C < T_J < 115^{\circ}C$; all voltages are with respect to ground (GND); positive current flows into the pin, *NORMAL* operating mode, if not otherwise mentioned. The LDO block is a linear voltage regulator, which provides a regulated 5V.

Symbol	Parameter	Min	Тур	Мах	Unit	Note	
V _{SUP}	Input supply voltage	6	12	32	V		
V5V	Output voltage range	4.75	5.0	5.25	V		
I _{LOAD}	Load Current			50	mA		
ICC_SH	Output short circuit current		85	250	mA	NORMAL mode	
PSRR	PSRR		60		٩Ŀ	f=1kHz / No production test dB	
1 3111		35 di	ub	f=1MHz / No production test			
CL1	LDO output Capacitor 1	2.2		10	μF	Electrolytic	
ESR1		1		10	Ω	ΕΙΕCΙΤΟΙΥΓΙΟ	
CL2	LDO output Capacitor 2	100		220	nF	Ceramic	
ESR2		0.02		1	Ω	Ceranne	

Figure 8: LDO Parameters

Note(s):

1. In NORMAL mode, maximum load current will be 50mA. After internal thermal shutdown, current limit is 20mA.

2. The LDO is disabled in *SLEEP* mode.

Digital to Analog Converter

-40°C < T_J < 115°C; all voltages are with respect to ground (GND).

Figure 9: Digital to Analog Converter

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{SUP_DAC}	Input supply voltage	4.75	5	5.25	V	LDO output as supply
V _{INREF}	Input reference voltage	4.485	4.5	4.515	V	After absolute trim at 0 hours, specification does not include solder stress/board stress effects
D _{IN}	Resolution		12		bits	Guaranteed by design
F _{DAC}	Update rate		10		KHz	
T _{SETT_DAC}	Settling time		50		μs	No production test
DAC _{INL}	INL		±4		LSB	No production test
DAC _{DNL}	DNL		±0.5		LSB	

Analog to Digital Converter

-40°C < $T_{\rm J}$ < 115°C; all voltages are with respect to ground (GND).

Figure 10: Analog to Digital Converter

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{SUP}	Input supply voltage	4.75	5	5.25	V	LDO output as supply
V _{INREF}	Input reference voltage	4.485	4.5	4.515	V	After absolute trim at 0 hours, specification does not include solder stress/board stress effects
D _{OUT}	Resolution		12		bits	
T _{MEAS_ADC}	Measurement time per channel		1.4		ms	
ADC _{INL}	INL		±4		LSB	No production test
ADC _{DNL}	DNL		±2		LSB	No production test

Pre-Regulator

This Pre_reg is an internal regulator which provides supply to digital and a few analog blocks. -40°C $< T_J < 115$ °C; all voltages are with respect to ground (GND).

Figure 11: Pre-Reg Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{SUP}	Input supply voltage	6	12	32	V	
P5V	Prereg_output voltage range	4.3	5.0	5.5	V	
3V3	3.3V_output voltage range	2.8	3.3	3.6	V	

PWM Driver

 $40^{\circ}C < T_J < 115^{\circ}C$; all voltages are with respect to ground (GND).

Figure 12: PWM Driver

Symbol	Parameter		Тур	Мах	Unit	Note
V5V	Output voltage	4.5	5	5.5	V	
F _{PWM}	Frequency of PWM	25	100	200	KHz	
		22	25	28	%	
		12	15	18	%	
	Duty cycle	17	20	23	%	
F _{Duty}		27	30	33	%	CMOS load mode,
' Duty		30	35	38	%	Optocoupler load mode
		37	40	43	%	
		42	45	48	%	
		47	50	53	%	
F _{duty_error}	Duty cycle error	7	12	20	%	
tr _{pwm}	Rise time	30	50	80	ns	CMOS load mode, Optocoupler load mode
tf _{pwm}	Fall time	30	50	80	ns	Guaranteed by design
Idrive _{opto}	Driver strength		10	12	mA	Optocoupler load mode
Cload _{fd_out}	Driver switch load capacitance		60	100	pF	

PWM Oscillator

-40°C < $T_{\rm J}$ < 115°C; all voltages are with respect to ground (GND).

Figure 13: PWM Oscillator

Symbol	Parameter	Min	Тур	Max	Unit	Note
f _{osc}	Frequency	90	100	110	kHz	 After the frequency trim Programmable frequency options for 25KHz, 50KHz and 200KHz are available
f _{OSC_ACC}	Accuracy		±15		%	

Oscillator for Digital Circuit

-40°C < $T_{\rm J}$ < 115°C; all voltages are with respect to ground (GND).

Figure 14: Oscillator for Digital Circuit

Symbol	Symbol Parameter		Тур	Max	Unit	Note
f _{OSC-DIG}	Frequency	9	10	11	kHz	Oscillator for Digital circuit
f _{OSC_ACC}	Accuracy		±15		%	

External Temperature Thresholds

 $-40^{\circ}C < T_{J} < 115^{\circ}C$; all voltages are with respect to ground (GND).

Figure 15:	
External Temperature Thresholds	

Symbol	Parameter	Min	Тур	Max	Unit	Note
	Code 0000	3.084	3.165	3.238		
	Code 0001	3.148	3.231	3.306		
	Code 0010	3.213	3.297	3.373		
	Code 0011	3.277	3.363	3.441		
	Code 0100	3.341	3.429	3.508		
	Code 0101	3.406	3.495	3.576		
	Code 0110	3.470	3.561	3.643		16 reference thresholds are with a step of 66mV
Ref_ext_warn/sutdown	Code 0111	3.534	3.627	3.711	V	
hei_ext_wain/sutdowin	Code 1000	3.599	3.693	3.779	v	
	Code 1001	3.663	3.759	3.846		
	Code 1010	3.727	3.825	3.914		
	Code 0011	3.792	3.891	3.981		
	Code 0100	3.856	3.957	4.049		
	Code 0101	3.920	4.023	4.116	-	
	Code 0110	3.984	4.089	4.184		
	Code 0111	4.049	4.155	4.25		

Ron of the Shuttle Switches (Internal Switch for Charging/Discharging)

-40°C < T_J < 115°C.

Figure 16: Ron of the Shuttle Switches

Symbol	Parameter	Min	Тур	Max	Unit	Note
Ron_shut	Shuttle switch ON resistance		5	20	Ω	The maximum charging /discharging current is to be limited to 100 mA . Due to variation of shuttle switch resistance with temperature and cell voltage the switch resistor should be considered as zero when calculating the value of the discharge resistor ⁽¹⁾ .

Note(s):

1. There are always 2 switches in series for the charge/discharge current path. For cell 1 the typical switch resistance in this path is not 5 +5 Ohm but 2+5Ohm. For cell voltages below 2V and 115°C junction temperature the current need to be limited to 30 mA.

Over-Temperature Measurement

Figure 17: OTM Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Note
T _{jshut}	Shut down temperature	n temperature 115 135 145 °C		°C	Junction temperature for Shutdown	
T _{jwarn}	varn Warning temperature		125	140	۰C	Junction temperature for Warning
T _{jrecv}	v Recovery temperature 100 115 130		°C	Junction temperature for Recovery		

Weak Cell Detection (Voltage Comparator)

Figure 18: Weak Cell Detection

Symbol	Parameter		Тур	Max	Unit	Note
V _{CELL}	Supply voltage	-0.3	3.6	4.5	V	
V _{LOW}	Low voltage detection		100	mV		
	Minimum input spike filter		2			No production test. Programmable option.
Tl_spike			4			
П_эріке			6		μs	
			8			

Power on Voltage Detection

Figure 19: Power on Voltage Detection

Symbol	Parameter	Min	Тур	Мах	Unit	Note
VSUP_POR	VSUP Power-on-Reset threshold ON	5.2	5.5	5.8	V	Rising edge of VSUP
VSUP_RESET	VSUP Power-on-Reset threshold OFF	4.6	4.85	5.1	V	Master reset for device
V5V_IN_POR	V5V_IN Power-on-Reset threshold ON	3.8	4.45	4.8	V	Voltages are with respect to VSUP measure as pass fail
V5V_IN_RESET	V5V_IN Power-on-Reset threshold OFF	3.6	4.1	4.5	V	test
V5V_POR	V5V Power-on-Reset threshold ON	4.1	4.5	4.7	V	Rising edge of V5V
V5V_RESET	_RESET V5V Power-on-Reset threshold OFF		4.1	4.3	V	Falling edge of V5V

Electrical Characteristics for Digital Inputs and Outputs

All pull-up, pull-downs have been implemented with active devices.

Figure 20: Digital Inputs and Outputs

Port Type	Symbol	Parameter	Min	Тур	Max	Unit	Note
	I		CS				
	Vt-	Negative-going threshold	1.62		2.22	V	V5V=5V
INPUT Schmitt Trigger	Vt+	Positive-going threshold	2.27		3.42	V	v3v-3v
	I _{lil_cs}	Pull-up current	-100		-30	μΑ	In CS pad, Pulled up to V5V. (ISUP_HV)
			SDO				
	V _{OH}	High level output voltage	2.5			V	
	V _{OL}	Low level output voltage			0.4	V	VSUP ≥ 6V
OUTPUT Tristate	V _{IH}	High level input voltage	0.7*V5V			V	
	V _{IL}	Low level input voltage				V	For Master mode connect to Local ground.
	۱ ₀	Output drive current			4	mA	
			SCLK, SI	DI			
IO Buffer	V _{IH}	High level input voltage	0.7*V5V			V	
	V _{IL}	Low level input voltage			0.3*V5V	V	

Port Type	Symbol	Parameter	Min	Тур	Max	Unit	Note			
			CVT_NOK_	OUT		•				
	V _{OH}	High level output voltage	2.4			V				
OUTPUT Buffer	V _{OL}	Low level output voltage			0.4	V	VSUP ≥ 6V			
	Ι _Ο	Output drive current			2	mA				
BD_OUT										
	V _{OH}	High level output voltage	2.4			V				
OUTPUT Buffer	V _{OL}	Low level output voltage			0.4	V	VSUP ≥ 6V			
	Ι _Ο	Output drive current			1	mA				
	TRIG_OUT, CLK_OUT									
	V _{OH}	High level output voltage	2.4			V				
OUTPUT Buffer	V _{OL}	Low level output voltage			0.4	V	VSUP ≥ 6V			
	Ι _Ο	Output drive current			4	mA				
			FD_OU	т						
	V _{OH}	High level input voltage	2.4			V				
OUTPUT Buffer	V _{OL}	Low level input voltage			0.4	V	VSUP ≥ 6V			
	Ι _Ο	Output drive current			24	mA				
	1	1	MS_SI	_						
INPUT Buffer	V _{IH}	High level input voltage			VSUP	V	High voltage input pad, for slave mode connect to VSUP.			
	V _{IL}	Low level input voltage	0			V	For Master mode connect to Local ground.			

Port Type	Symbol	Parameter	Min	Тур	Мах	Unit	Note		
CLK_IN, TRIG_IN									
INPUT Schmitt	Vt-	High level input voltage	1.62		2.22	V			
Trigger	Vt+	Low level input voltage	2.27		0.3*V5V	V			
	FD_IN,BD_IN,CVT_NOK_IN								
INPUT Buffer	V _{IH}	High level input voltage	0.7*V5V			V			
	V _{IL}	Low level input voltage			3.42	V			
WAKE_IN Pull up current	lpull_up	Pull-up current	-100		-30	μΑ	Internal pull		

Note(s):

1. Test limits for lih and lil are 1.0uA and -1.0uA for input pads.

Detailed Description

The device consists of the following blocks:

- PWM driver
- LDO_5V with 5V / 50mA output
- Temperature monitor block
- High precision bandgap reference
- DAC for the reference voltage generation
- SAR ADC for cell voltage and external temperature measurement
- Oscillators for PWM drive and for the digital logic
- Pre-Regulator
- SC Comparator
- Weak cell detection logic
- PORs on different supplies

Voltage Regulator (LDO_5V)

Power input to the LDO is VSUP pin. It is switched ON when the device is in *NORMAL* mode and switched OFF in *SLEEP* mode. The LDO takes the input from Bandgap and scales it up to the required voltage. It starts charging only after entering *NORMAL* mode. This LDO is the supply for DAC, the PWM driver and Cell voltage comparators. It's additional features are as follows:

- Stability is better than ±2.5% over input range.
- Load current up to 50mA.

High Precision Bandgap (HPBG)

AS8506C has a high precision bandgap to generate accurate reference. This reference voltage is used to generate reference for DAC, ADC and external temperature sensors.

External Temperature Monitor and Measurement

Two sensor inputs TEMP_IN1 and TEMP_IN2 with a comparator on each pin, are available. If the temperature sensor connected to TEMP_IN1 crosses its threshold, then a warning flag is set in the device (status can be read through SPI) and the device will continue balancing.

If the temperature sensor connected to TEMP_IN2 crosses its threshold, then a flag is set in the device and balancing is stopped; but the device continues to stay in *NORMAL* mode for maintaining synchronism. In both the cases, the microcontroller will be interrupted by a pulse on CVT_NOK_ OUT pin.

In case the external temperature sensors are not being used, then both the inputs must be connected to GND pin through 1k resistor. In the measurement phase, external temperature is

measured through the SAR ADC. Both channels of temperature will be measured and stored in temp_in1_lsb_reg to temp_in2_msb_reg.

Internal Temperature Monitor

The internal temperature monitor has two thresholds at T_{jwarn} 125°C and T_{jshut} 135°C. If the internal temperature exceeds 125°C, then a warning flag is set in the device (status can be read through SPI) and the device will continue balancing.

If the internal temperature exceeds 135°C, then a flag is set in the device and balancing is stopped; but the device continues to stay in *NORMAL* mode for maintaining synchronism. In both the cases, the microcontroller will be interrupted by a pulse on CVT_NOK_OUT pin. The balance recovery temperature is 115°C.

PWM Generator

In the Balance phase of the AS8506C, based on the decision made during the Compare phase, some part of the cell is charged with the Flyback converter. To drive the external Flyback converter, AS8506C generates a PWM signal to drive external FET or Optocoupler or Isolation device.

The frequency and of the PWM generator can be controlled by timer_cntl_reg register.

PWM frequency is not used for the passive balancing.

RC Oscillator

The AS8506C has a trimable RC oscillator. It is designed to generate $f_{osc-dig}$ clock for the digital circuit and for the clocking of the IC. Each oscillator will be trimmed with the process to get the accuracy to $f_{osc-accv}$ with 5-bit OTP Factory trim code.

DAC for the Reference Generation

AS8506C has a 12-bit DAC to generate the cell reference voltage, cell threshold low and high voltage. The DAC code is written into AS8506C with SPI interface from microcontroller. The output of the DAC is given to one of the inputs of the comparators, to compare the cell voltages synchronously. Reference for the DAC is 4.5V, which is internally generated and is available as reference for temperature inputs on REF_T.

SAR ADC

AS8506C has a 12-bit SAR ADC to measure the cell voltage and external temperature. The SAR ADC uses the 12-bit DAC to generate the digital code. The SAR ADC range is 1.8V to 4.5V for cell voltage measurement and 0.2V to 4.5V for the temperature measurement.

Cell voltage and temperature is measured in the short trigger phase. After the trigger goes 'high', compare phase starts and then all the cell voltages and external temperature are measured and stored in the digital registers.

Pre-Regulator

AS8506C has an internal pre-regulator, which generates supply voltages for the internal blocks. Pre-Regulator output is used as a supply for the oscillators. All the digital logic and the FSM will work on the pre-regulator supply.

In *SLEEP* mode only the pre-regulator will be working along with the WAKE_IN detect circuit.

Cell Threshold

AS8506C has the potential to set the two threshold levels to the cell voltage through pins CELL_THU and CELL_THL. These values can be set externally, (or) through OTP trim bits, (or) from the external microcontroller by writing DAC code into the cell threshold registers in the register space.

Weak Cell Detection

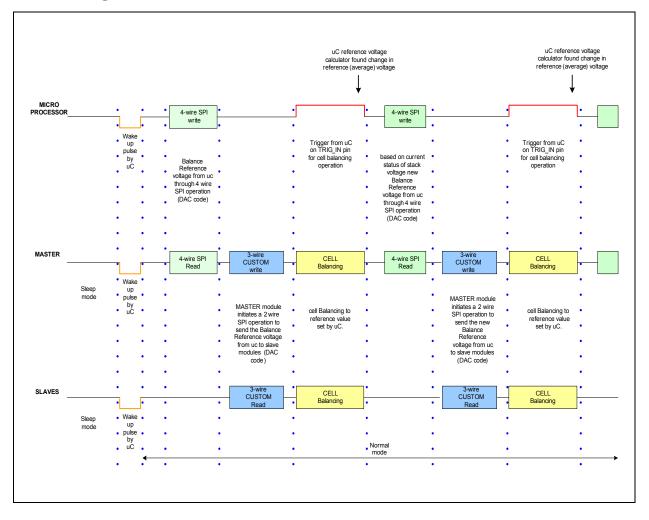
AS8506C has the ability to detect the weak cell. During load conditions, if the cell reaches voltage of about 0.1V to -0.2V, then this variation is detected and stored in the zero cross detection register. This event is indicated to the master device by a pulse on CVT_NOK_OUT pin in Compare and Balance phase. The master device indicates the microcontroller by setting CVT_NOK_OUT 'high'. In *WAIT* mode only this will be stored in the register; there won't be any CVT_NOK_OUT to μ C. The register is cleared on μ C reading.

External Resistor Divider Control

AS8506C has the provision to enable the external divider to give the desired cell voltage to the at VREF_IN pin. External resistor divider can be connected between VREF_H pin to ground. Typical internal ON resistance of the VREF_H switch is 30Ω .Calculate the external resistor divider values such that the output of the divider will provide the desired reference value. When comparison is not happening, this divider can be disabled using SPI.

PORs on Different Supplies

AS8506C has power-on-reset blocks on VSUP, V5Vand V5V_IN supply pins. The values for POR and Reset thresholds are given in Figure 19.

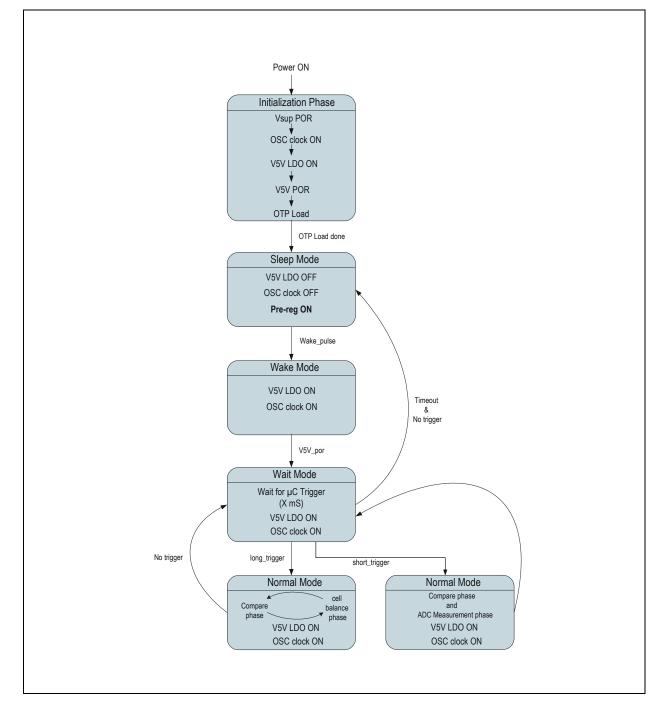

AS8506C System Operation

The AS8506C battery stack system can be set up by configuring one AS8506C device as 'Master' and the rest as 'Slave' devices. The AS8506C Master device is connected to the microcontroller, and the Slave devices are connected to Master through a daisy-chain of 3-wire customized SPI protocol. The microcontroller can communicate to the Slave devices through the Master. On power-up of the system, the microcontroller must assign an address to all AS8506C devices including the Master. The microcontroller can assign the address to AS8506C devices by initiating the address allocation process, by writing a top most Slave device address into dadd_for_allc_reg register of Master and then writing '07' data into spi3_cmd_reg. Once the address allocation process is successful, the microcontroller can start the cell balancing. If cell balancing or check status command is not triggered by the microcontroller, after WAIT mode timeout period all devices enter into SLEEP mode.

The complete system communication procedure is explained below.

- The microcontroller gives wake pulse on WAKE_IN to bring the Master and Slaves in *NORMAL* mode.
- After the wake-up time period, the microcontroller (μC) sends the reference voltage digital code to the Master device through a 4-wire SPI.
- After receiving the digital reference code from μ C, the Master device initiates a 3-wire custom SPI operation to send the digital reference code to the Slave devices.
- The microcontroller waits for the 3-wire SPI operation time period. After the 3-wire SPI time period, it initiates the cell balancing through TRIG_IN. The balancing will continue as long as TRIG_IN is 'High'.
- The microcontroller can change the reference value at any time by making TRIG_IN 'Low' and initiating a 4-wire SPI with new value of reference code. From here on, the procedure is same as from point 3.
- The balance done is indicated on BD_OUT pin.
- The failure in the 3-wire SPI operation is indicated on CVT_ NOK_OUT pin.

Figure 22: Functional Diagram of AS8506C



Functional State Diagram

Figure 23: Finite State Machine Mode

Operating Modes

The AS8506C has two main operating modes *NORMAL* and *SLEEP*, and has two transition modes *WAIT* and *WAKE*. The transition modes are intermediate modes for switching from *SLEEP* to *NORMAL* and vice versa. The detailed operation of each mode is explained in subsequent sections. The initialization phase is explained in Initialization Sequence.

NORMAL Mode

The device enters into *NORMAL* from *WAKE* when it receives a short or long trigger. The *NORMAL* mode is a full functional mode, where all the power supply and analog blocks are in ON-state and the digital is fully functional.

The NORMAL mode has two phases of operation:

- Diagnosis phase
- Compare and Balance phase

Diagnosis Phase

In Diagnosis phase AS8506C detects the number of cells connected to the device. The connected cell voltages are then compared with upper & lower thresholds and target cell voltage of all cells connected. Upper and lower cell voltage thresholds as well as target cell voltages are provided from external in analog or digital format. The Diagnosis phase sequence of operation is explained below.

- Detects number of cells connected to the device by comparing each cell terminals to cell detect threshold voltage.
- Simultaneously compares each connected cell voltage with set lower operating voltage threshold Vlimit_L. If any of the cell voltages is less than the set lower operating threshold, then an indication is given on CVT_NOK_OUT pin stating that one/more cell voltages are not within the operating voltage threshold range. Each cell status is stored in cel_low_thsld_stat_reg register.
- Simultaneously compares each connected cell voltage with set higher operating voltage threshold Vlimit_H. If any of the cell voltages is greater than the set higher operating threshold, then an indication is given on CVT_ NOK_OUT pin stating that one/more cell voltages are not within the operating voltage threshold range. Each cell status is stored in cel_high_thsld_stat_reg register.
- Simultaneously compares each connected cell voltage with reference value. This result is stored in cel_ref_stat_ reg register and used in balance phase. Cell reference can be provided by microcontroller by writing into register or by providing input at external pin VREF_IN.
- Enables the SAR ADC and measures each cell voltage and two temperature inputs sequentially. The 12 bits cell voltage and temperature inputs information is stored in respective registers.

At the end of the Diagnosis phase, if trigger signal is 'High' then it enters into Balance phase. If trigger signal is 'Low' it enters into *WAIT* mode.

The Diagnosis phase without the cell voltage and temperature measurement with SAR ADC is called **Compare phase**.

Compare and Balance Phase

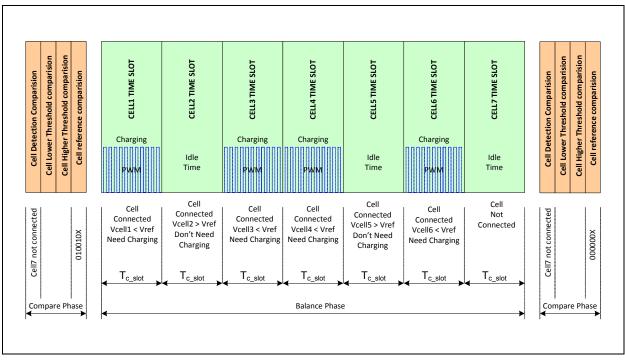
The Balance phase is basically a charging cycle in case of active balancing and a discharging cycle in case of passive balancing. The Balance phase is divided into 7 time slots. The device will move through all 7 time slots irrespective of number of cells connected to the device. This is done to keep synchronization between each module in case of battery stack system. One time slot is assigned to each cell (sequential order) for charging or discharging. The period of time slots is programmable (see Status Registers).

In each time slot, following operations are done.

- Check CVT_NOK flag status. If CVT_NOK flag is set, then no operation is done till time slot is over. If CVT_NOK flag is not set, then move to the next step.
- Based on Diagnosis phase results, shuttle switch corresponding to current time slot cell is switched ON for charging that cell in case of active balancing, and discharging in case of passive balancing.
- The PWM generator is enabled and PWM driver start driving the Flyback converter FET (external component) in case of active balancing. The PWM frequency and duty cycles are factory programmable and also register controllable. In case of stack system, the bottom module PWM driver is enabled when there is a request of charging or discharging from top module on FD_OUT pin.
- At the end of the current time slot, stop the PWM generator and then open the corresponding shuttle switches. The device moves to the next time slot.

In the Balance phase, at any point, if the trigger input goes 'Low', then the device suspends balancing operation and enters into *WAIT* mode.

An example of Compare and Balance (active balance) phase sequence with respect to time is given in Figure 24. In this example it is assumed that only 6 cells are connected to AS8506C and comparators' outputs at Diagnosis phase is "010010X";


Where:

'0' indicates respective cell voltage is less than target voltage and needs charging.

'1' indicates respective cell voltage is more than target voltage and charging is not needed.

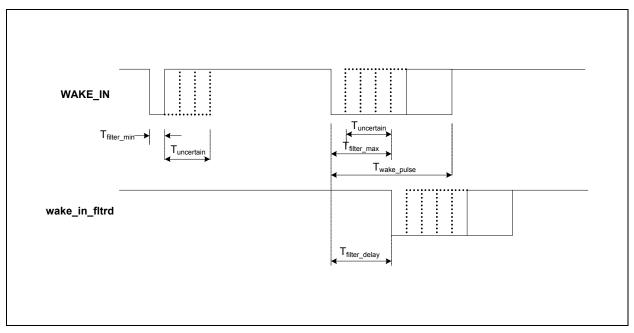
'X' indicates no cell is connected to respective comparator and output is neglected.

Sleep Mode

This is the least power consumption mode of AS8506C. In this mode only pre-reg is ON, rest all analog blocks are OFF and digital clock is disabled. Only a digital wake detection circuit is active. The device enters into this mode when there is no trigger from microcontroller for time greater than *WAIT* mode timeout period.

Wait Mode

This mode is a transition mode, where the device waits for command on TRIG_IN pin either from microcontroller, (or) from below module in case of stack system. The device will be in this state for T_{WMODE_TOUT} period. After the timeout, the device enters into *SLEEP* mode. In the *WAIT* period all power blocks are ON, all analog blocks are ON and digital is also functional. In this mode, power consumption is lesser than *NORMAL* mode because there are no charge balancing activities being carried out.


Wake Mode

This is also a transition mode, where the device does initialization after exiting *SLEEP* mode. In the *SLEEP* mode if AS8506C receives a wake pulse of width T_{WAKE}, the device enters into *WAKE* mode. In the *WAKE* mode device enables the V5V LDO and waits for V5V_por_n signal. Once V5V_por_n signal becomes 'High', the device enters into *WAIT* mode.

Wake-Up Event

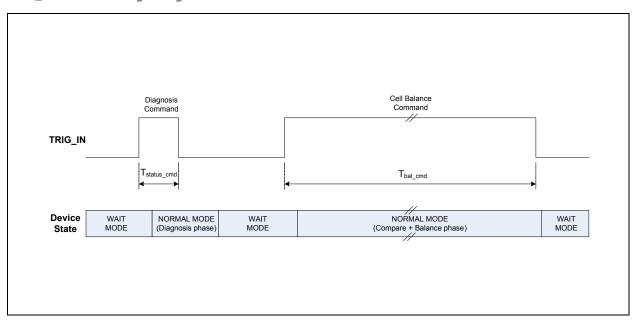
The AS8506C device comes out of *SLEEP* mode by a wake pulse on the WAKE_IN pin. To avoid false wake by noises on the WAKE_ IN, the wake signal (Low pulse) is taken through a low-pass filter from WAKE_IN pin. When a pulse of width T_{wake_pulse} is given on the WAKE_IN by the microcontroller, the device wakes up and enters into *WAKE* mode. The low-pass filter discards all signals having width less than T_{filter_min} and allows all signals with width greater than T_{filter_max} . The filter is uncertain in $T_{uncertain}$ region. The negative edge which is passing through the filter will wake the device from *SLEEP* mode. In chain of AS8506C devices, to propagate the negative edge the microcontroller has to give minimum low pulse of width T_{wake_pulse} . Before entering into *SLEEP* mode the wake pin must be 'High'.

Trigger Event

The AS8506C device enters into *NORMAL* mode only when a valid command is present on the TRIG_IN pin. There are two commands in the device.

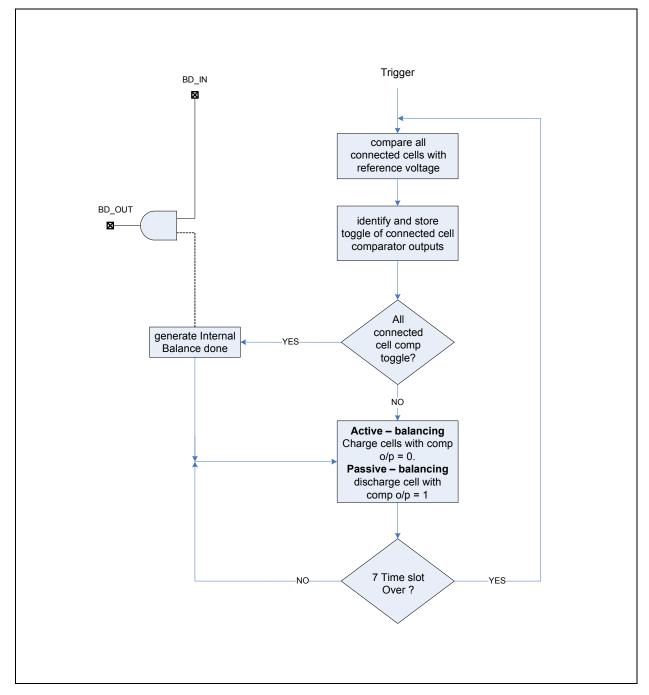
- Diagnosis command
- Cell balance command

When a high pulse of width T_{diag_cmd} as shown in Figure 26, is given on TRIG_IN pin, the device performs the following operations.

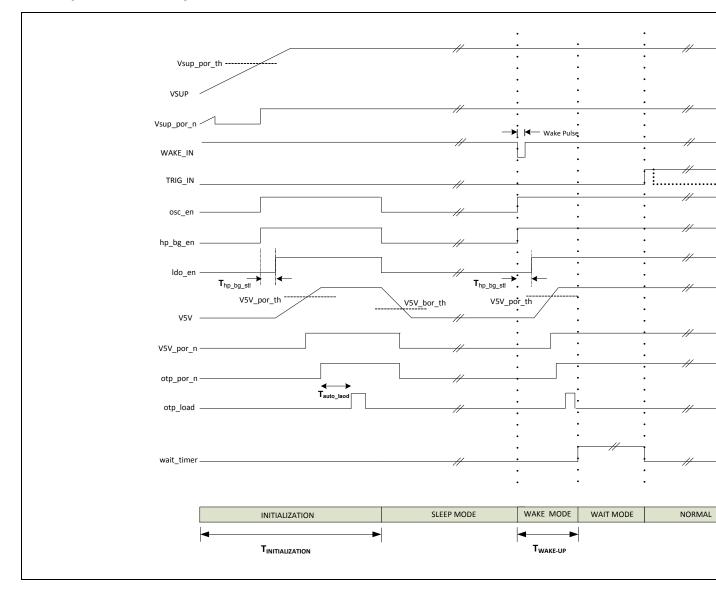

- Compares all connected cell voltages with the set lower operating voltage threshold, and if any of the cell voltage is less than lower threshold, then sets a corresponding flag in the cel_low_thsld_stat_reg register. This is indicated by high pulse on CVT_NOK_OUT pin.
- Compares all connected cell voltages with the set higher operating voltage threshold, and if any of the cell voltage is more than higher threshold, then sets a corresponding flag in the cel_high_thsld_stat_reg register. This is indicated by high pulse on CVT_NOK_OUT pin.
- Sets a corresponding flag in the temp_stat_reg register if ambient temperature or internal chip temperature is higher than respective thresholds. This is indicated by high pulse on CVT_NOK_OUT pin.
- It will enable SAR ADC and starts measuring each cell voltage, and then measures temperature channel measurement. The 12 bits digital value will be stored in corresponding registers.

Thus, on diagnosis command the device gives the cell operating voltage, ambient temperature and internal temperature status with respect to its safe operating range.

When the TRIG_IN pin is 'High' for longer than the status command, the device enters into Balance phase. Depending upon cell voltage status, the device starts balancing the cell voltages. The cell voltage balancing is continued till the high voltage on the TRIG_IN pin. As soon as TRIG_IN goes 'Low', the device stops balancing and enters into WAIT mode. Thus, the microcontroller has full control over the balancing time and stop balancing whenever required.


Figure 26: TRIG_IN Command Signaling

Balancing Algorithm


Initialization Sequence

The power-up initialization sequence diagram for AS8506C is shown in Figure 28.

- When the power supply is switched ON, initially VSUP POR output Vsup_por_n is 'Low'; hence all the digital logic will be in reset state.
- Once the VSUP crosses the Vsup_por_th, the VSUP POR output becomes 'High' enabling the oscillator and high-precision bandgap (HPBG) block.
- The digital block is now operational. It will now enable the V5V LDO and waits for V5V_por_n high signal from the V5V POR block.
- Once the V5V crosses V5V_por_th, the V5V_por_n will be 'High'. The OTP auto load command is generated by 'High' on otp_por_n signal. Now the device waits for T_{auto_load} period for OTP contents to load into digital local registers.
- After the OTP contents are loaded into digital local registers, the device power-up sequence is completed. The device enters into *SLEEP* mode. In *SLEEP* mode, the LDO, oscillator and HPBG are disabled.
- The wake-up circuit monitors the WAKE_IN pin for wake-up pulse. When a wake-up pulse is received, the oscillator and HPBG block are enabled and device enters into WAKE mode. In the WAKE mode, the device enables V5V LDO and waits for V5V_por_n high signal.
- Once the V5V crosses V5V_por_th, the V5V_por_n will be 'High' and the device enters into *WAIT* mode. In *WAIT* mode the device waits for trigger pulse on TRIG_IN pin from microcontroller. In this state, if a short or long pulse trigger signal is received on TRIG_IN within T_{wmode_tout} period, the AS8506C enters into *NORMAL* mode and performs required operations based on trigger pulse.

Figure 28: Power-Up Initialization Sequence

Device Interface

A 4-wire SPI is used to communicate with the device. Pins **CS**, **SCLK**, **SDI**, and **SDO** are used for SPI interface.

Serial Peripheral Interface

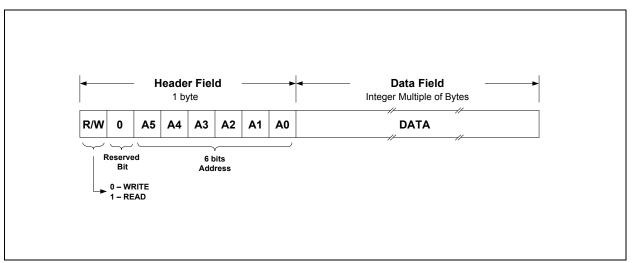
The Serial Peripheral Interface (SPI) provides the communication link with the microcontroller. The SPI is configured for half-duplex data transfer. The SPI in AS8506C provides access to the status registers, control registers and test registers. The SPI is also used to enter into test and OTP modes. This interface is only Slave interface and only Master can initiate the SPI operation. The SPI also supports block data transfer where sequential register data can be accessed with single SPI command.

The SPI can work on both the clock polarities. The polarity of the clock is dependent on the value of SCLK at the falling edge of CS.

At the falling edge of CS,

- If SCLK is "1", then the SPI is negative edge triggered.
- If the SCLK is "0", then SPI is positive edge triggered logic. see Figure 29 for more details.

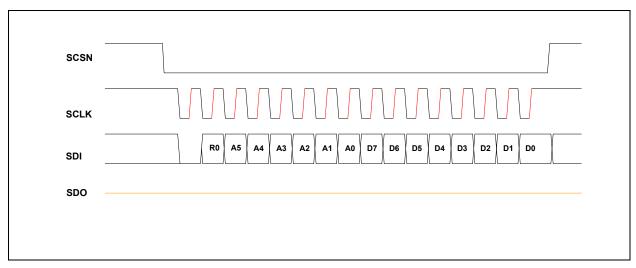
Figure 29: SPI Clock Polarity Table


CS	SCLK	Description
\downarrow	Low	Serial data is transferred at rising edge and sampled at falling edge of SCLK
\downarrow	High	Serial data is transferred at falling edge and sampled at rising edge of SCLK

The SPI protocol frame is divided into two fields.

- The header field
- The data field

The header field is 1 byte long; containing a read/write command bit, 1 reserved bit, and 6 address bits. The SPI frame format is shown in Figure 30. In the data phase MSB is sent first and LSB is sent last.


SPI Write Operation

The SPI write operation begins with clock polarity selection at negative edge of CS (see Figure 29). Once the clock polarity is selected, the SPI write command is given by providing '0' in R/W bit of the header field in first sampling edge at SDI pin. The next bit in header field is reserved and set to '0'. The 6 bits address of register to be written is provided at SDI pin in next six consecutive sampling edges of SCLK. The data to be written is followed by last bit of header field. With each sampling edge a bit is sampled starting from MSB to LSB. During complete SPI write operation the SCSN has to be 'Low'. The SPI write operation ends with positive edge of SCSN. The waveform for SPI write operation with single data byte is shown in Figure 31 and Figure 32.

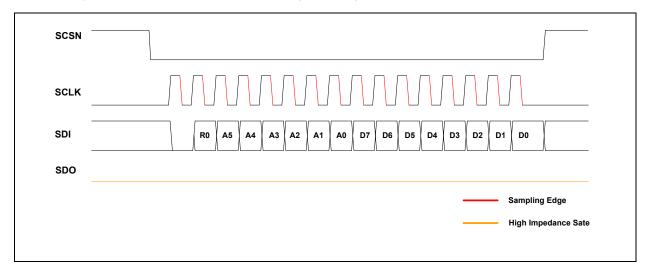


Figure 31:

SPI Write Operation with Negative Clock Polarity and 1 Byte of Data Field

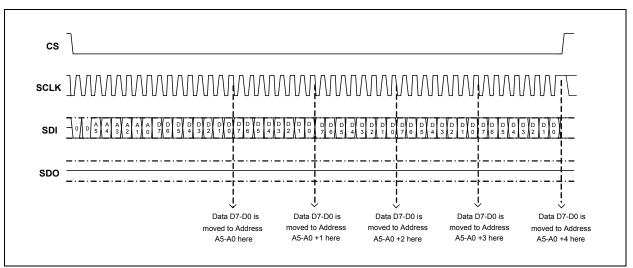


Figure 32: SPI Write Operation with Positive Clock Polarity and 1 Byte of Data Field

In case of SPI block write operation, first data byte is written into addressed register same as single byte write operation. After first data byte, Master can send next data byte by keeping CS 'Low' and giving clock on SCLK as per polarity selection. At the end of every eighth data bit, the byte is written into next consecutive address location (internally address is incremented by one location). In this way, Master can continue writing into consecutive address locations. The waveform is shown in Figure 33.

Figure 33: SPI Block Write Operation with Negative Clock Polarity

SPI Read Operation

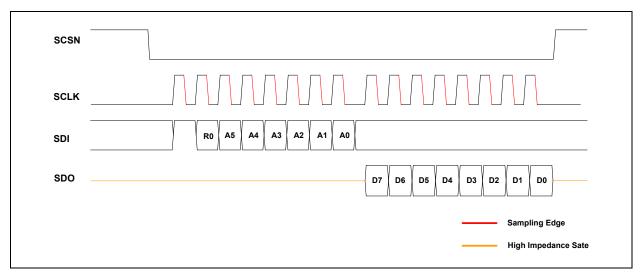
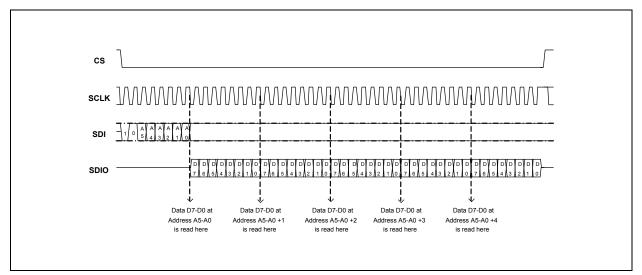

The SPI read operation also begins with clock polarity selection at negative edge of SCSN (see Figure 29). Once the clock polarity is selected, the SPI read command is given by providing '1' in R/W bit of the header field in first sampling edge at SDI pin. The next bit in header fields is reserved and set to '0'. The 6 bits address of register to be read is provided at SDI pin in next six consecutive sampling edges of SCLK. The read data is followed by last bit of header field on SDO pin. With each sampling edge a bit can be read on SDO pin starting from MSB to LSB. In case of multi-data bytes, MSB of next data byte can be read after the LSB of previous data byte. During complete SPI read operation the SCSN has to be 'Low'. The SPI read operation ends with positive edge of SCSN. The wave form for SPI read operation with single data byte is shown in Figure 34 and Figure 35.

Figure 34: SPI Read Operation with Negative Clock Polarity and 1 Byte of Data Field


Figure 35:

SPI Read Operation with Positive Clock Polarity and 1 Byte of Data Field

In case of SPI block read operation, first data byte is read from addressed register same as single byte read operation. After first data byte read, Master can read next consecutive addressed data by keeping CS 'Low' and giving clock on SCLK as per clock polarity selection. At the end of every eighth data bit, the address pointer is incremented to next consecutive address location. In this way Master can continue reading from consecutive register address locations. The waveform is shown in Figure 36.

Figure 36: SPI Block Read Operation with Negative Clock Polarity

Address Allocation Process

During the system configuration the microcontroller has to initiate the address allocation process for the AS8506C master and the stacked slave devices.

This process is started by writing the number of stacked IC's into address 0x1A (master register dadd_for_allc_reg) through the 4 wire SPI. After that the microcontroller needs to initiate the auto address allocation process by writing the datum 0x07 to master address 0x28 (register spi3_cmd_reg).

After the successful SPI3 address allocation write operation, all AS8506C devices including master will store their allocated device addresses as their address.

The device address "000000" is reserved as broadcast address seen by all devices.

The address allocation process is explained for 6 AS8506C devices (including master) in Figure 37.

Figure 37: Address Allocation Process

SPI3 :	address allocation write operation	STOP	— Address allocation process →
CLK-IN/OUT			
- TRIG-IN/OUT -	C1 C0 TST		
CVT_NOK_IN			
Address of 6 th Device	Address = X	New Address = 6	
CVT_NOK_OUT6 CVT_NOK_IN5 —			
Address of 5 th Device	Address = X	New Address = 6	6 -1 = 5 Final Address
CVT_NOK_OUT5 CVT_NOK_IN4 —			
Address of 4 th Device	Address = X	New Address = 6	6-1=5 5-1=4 Final Address
CVT_NOK_OUT4 CVT_NOK_IN3			
Address of 3 rd Device	Address = X	New Address = 6	6-1=5 5-1=4 4-1=3 Final Address
CVT_NOK_OUT3 CVT_NOK_IN2			
Address of 2 nd Device	Address = X	New Address = 6	6-1=5 5-1=4 4-1=3 3-1=2 Final Address
CVT_NOK_OUT2 CVT_NOK_IN1			
Address of 1 st Device (Master)	Address = X	New Address = 6	6-1=5 5-1=4 4-1=3 3-1=2 2-1=1 Final Address
CVT_NOK_OUT1 (Master) —			

In the address allocation process, the CVT NOK IN/CVT NOK OUT pins of AS8506C are used. After the successful SPI3 address allocation write operation, all AS8506C devices including Master will store the top device address (sent by Master in SPI3 address allocation write) as its address. The top device identifies itself as top most device and registers the address as its final address and at first rising edge of clock all devices force 'High' on its CVT_NOK_OUT pin. The concept of address allocation is: after the STOP of SPI3, at every falling edge of the clock each device will sample its CVT_NOK_IN pin. If CVT_NOK_IN pin is 'High', the device will decrement the assigned address by '1' and continue to force 'High' on its CVT_NOK_OUT pin at rising edge of clock. If CVT_NOK_IN is sampled to be 'Low', then the address value at register will be stored as its final device address and it stops forcing 'High' on its CVT_NOK_OUT pin and makes it 'Low' at next rising edge of clock.

In Figure 37, top most device pins are suffixed with '6' down to lower most device (Master) pins suffixed with '1' in descending order. There is no device above topmost device, CVT_NOK_IN6 is always 'Low'; therefore the address sent by Master is final address for the top device. For the fifth device the CVT_NOK_ IN5 is 'Low' for one clock cycle, the address is decremented once. For the fourth device CVT_NOK_IN4 is 'Low' for two clock cycles, the address is decremented twice before registering it as final address. This procedure is continued and finally the Master device CVT_ONK_IN1 is 'Low' for 5 clock cycles, the address is decremented five times and finally address register will have value of "000001" as its final address. The microcontroller can identify the end of address allocation procedure in two ways:

- One way is by probing CVT_NOK_OUT of Master after initiating address allocation process for a pulse.
- The other method is by polling bit0 of spi3_cmd_reg register for '0' (Low) and no CRC errors.

During SPI3 address allocation write operation, if a CRC error occurs in the any of the Slaves, the Master indicates this failure of SPI3 transaction to all Slaves by driving TST bit 'High'. All Slaves should terminate the address allocation process if a 'High' TST bit is seen during start address allocation process SPI3 write operation. The Master will indicate the failure of address allocation process to μ C by asserting a flag in the spi3_sts_reg register and sending interrupt pulse on its CVT_NOK_OUT pin.

Communication to Slaves

There are two modes of communication between the Master and Slaves in the AS8506C stack system:

- Broadcast Communication
- Communication with Individual Slave

Broadcast Communication

The Broadcast of communication is used to send the reference, lower, upper threshold limit codes and timer control register values for all the slaves.

Reference and thresholds can be set by one of the two methods:

- Through the external pins
- Through the Internal DAC

In case of the stacked system, reference and thresholds can be set by writing DAC values though broadcast SPI command.

Write the corresponding data in the registers of timer_cntl_reg, ref_dcod_lsb_reg/ref_dcod_msb_reg, hlmt_dcod_lsb_ reg/hlmt_dcod_msb_reg and llmt_dcod_lsb_reg/llmt_dcod_ msb_reg and command in the Command Registers spi3_cmd_ reg and spop_dadd_bcmd_reg.

Example:

To write DAC code of 0x0666 in the lower threshold register of all the devices, initiate a broadcast command as given in the below sequence.

Figure 38: Threshold Setting through Broadcast Command to Slaves

Command	Register Name	Address	Data
To set low threshold	llmt_dcod_lsb_reg	0x23	0x66
	llmt_dcod_msb_reg	0x24	0x06
Broadcast the cell lower limit DAC code	spop_dadd_bcmd_reg	0x25	0x03
Broadcast communication command	spi3_cmd_reg	0x28	0x09

Each broadcast write operation takes 35 clock cycles of the communication frequency. The default communication frequency is 5KHz.

Broadcast slave register write is also possible other than above registers.

If there any specific register of all the slaves to be written with the same content of Master then this feature is useful.

Write register address in the spop_reg_add_reg.

Example:

To set the external temperature thresholds to 4.15V, initiate a broadcast command as given in the below sequence.

Figure 39:

External Temperature Threshold Setting through Broadcast Command to Slaves

Command	Register Name	Address	Data
To set the external temperature threshold	tflg_tshld_setg_reg	0x1D	0xFF
Address of the register to broadcast	spop_reg_add_reg	0x26	0x1D
Broadcast communication command	spi3_cmd_reg	0x28	0x0B

Communication with Individual Slave

Communication with an individual slave is done as SPI write or read.

Write Operation

To perform the write operation to one of the slave device, corresponding data should be written in these registers spop_dadd_bcmd_reg, spop_reg_add_reg, wrop_data_reg and spi3_cmd_reg.

Example:

To set the external temperature threshold of the slave device address 0x06 to 4.15V, initiate a broadcast command as given in the below sequence.

Figure 40: Write Operation to the Individual Slave

Command	Register Name	Address	Data
Slave device address	spop_dadd_bcmd_reg	0x25	0x06
Address of the slave register	spop_reg_add_reg	0x26	0x1D
To set the external temperature threshold	wrop_data_reg	0x27	0xFF
Slave write command	spi3_cmd_reg	0x28	0x05

Read Operation

To perform the read operation to one of the slave device, corresponding data should be written in these registers spop_ dadd_bcmd_reg, spop_reg_add_reg and spi3_cmd_reg.

Data from the slave device will be written in the register rdop_data_reg.

Example:

To read the temperature status register of the slave device address 0x06, initiate a broadcast command as given in the below sequence.

Figure 41:

Read Operation to the Individual Slave

Command	Register Name	Address	Data
Slave device address Slave	spop_dadd_bcmd_reg	0x25	0x06
Address of the slave register	spop_reg_add_reg	0x26	0x05
write command	spi3_cmd_reg	0x28	0x03

SPI Timing Diagrams

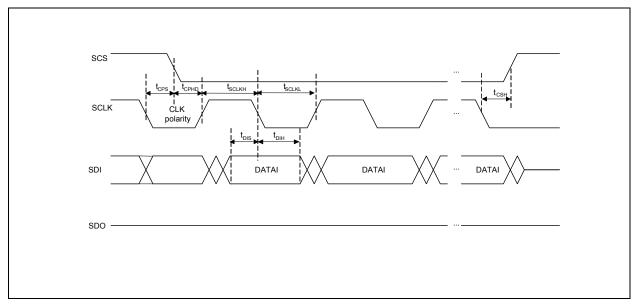
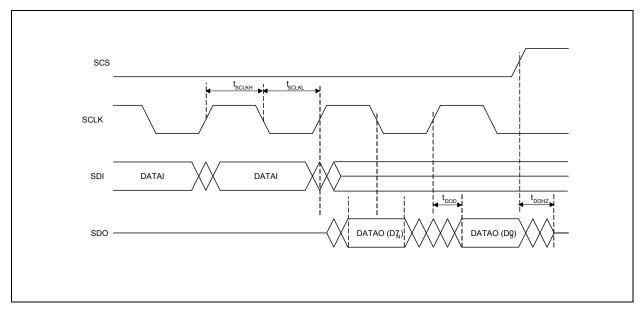



Figure 43: Timing Diagram for Read Operation

SPI Protocol

Figure 44: SPI Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Note			
General									
BR _{SPI}	Bit rate			1	Mbps				
T _{SCLKH}	Clock high time	400			ns				
T _{SCLKL}	Clock low time	400			ns				
		Write C	peration F	Parameter	S				
t _{DIS}	Data in setup time	20			ns				
t _{DIH}	Data in hold time	20			ns				
T _{CSH}	SCSN hold time	20			ns				
		Read C	peration F	Parameter	S				
t _{DOD}	Data out delay			80	ns				
t _{DOHZ}	Data out to high impedance delay			80	ns	Time for the SPI to release the SDO bus			
	Timing Parameters for SCLK Polarity Identification								
t _{CPS}	Clock setup time (CLK polarity)	20			ns	Setup time of SCLK with respect to SCSN falling edge.			
t _{CPHD}	Clock hold time (CLK polarity)	20			ns	Hold time of SCLK with respect to SCSN falling edge.			

System Timings

Figure 45: System Timings

Symbol	Parameter	Min	Тур	Max	Unit	Note			
Wake-Up Timing									
T _{wake_pulse}	Wake pulse width	100			μs				
T _{filter_delay}	Time between edge on TRIG_IN pin to trig_in_fltrd signal			4	μs				
T _{filter}	WAKE_IN pin filter specification	1		4	μs				
	Trigge	er Timing							
T _{status_cmd}	Status request command pulse	500		1000	μs				
T _{bal_cmd}	Cell balance command pulse	7000			μs				
Wait Mode Timing									
T _{wmode_tout}	<i>WAIT</i> mode timeout		2000		ms				

Register Space Description

The AS8506C register space is divided into control registers and test registers. All of these registers are accessed through SPI.

Status Registers

Figure 46: Cell Detection Status Register

Address	Register Name	Feature	SPI4	SPI3	POR Value		
		Indic	ates the detected cells.				
		D0	$0 \rightarrow \text{Cell 1 is not detected} \\ 1 \rightarrow \text{Cell 1 is detected}$				
	cel_det_stat_reg	D1	$\begin{array}{l} 0 \rightarrow \text{Cell 2 is not detected} \\ 1 \rightarrow \text{Cell 2 is detected} \end{array}$	-			
		D2	$\begin{array}{l} 0 \rightarrow \text{Cell 3 is not detected} \\ 1 \rightarrow \text{Cell 3 is detected} \end{array}$				
0x00			R	R	0000_0000 POR_V5V		
			D4	$\begin{array}{l} 0 \rightarrow \text{Cell 5 is not detected} \\ 1 \rightarrow \text{Cell 5 is detected} \end{array}$	-		
			D5	$\begin{array}{l} 0 \rightarrow \text{Cell 6 is not detected} \\ 1 \rightarrow \text{Cell 6 is detected} \end{array}$			
		D6	$\begin{array}{l} 0 \rightarrow \text{Cell 7 is not detected} \\ 1 \rightarrow \text{Cell 7 is detected} \end{array}$				
		D7	Reserved				

Figure 47: Diagnostic Status Register

Address	Register Name	Featu	SPI4	SPI3	POR Value	
	diag_sts_reg	register if	ic register. μC can read this ⁶ pulse is detected on CVT_ I T pin, to diagnose cause of n.			
		D0	1 \rightarrow Low Threshold limit cross Indicator ⁽¹⁾			
		D1	1 → High Threshold limit cross indicator ⁽²⁾			
0x01		diag_sts_reg $D2$ $1 \rightarrow Over-temperature indicator$	R	R	0000_0000 POR_V5V	
		D3	1 → Address allocation procedure fail	-		
		D4	1 \rightarrow SPI3 read operation fail			
		D5	1 \rightarrow SPI3 write operation fail			
		D6	1 → SPI3 Broadcast operation fail			
		D7	Reserved			

Note(s):

1. This bit is only valid if all 7 cells are connected. If the cells connected are less than 7, use the cel_low_thsld_stat_reg (0x02) to detect a low threshold crossing.

2. This bit is only valid if all 7 cells are connected. If the cells connected are less than 7, use the cel_high_thsld_stat_reg (0x03) to detect a high threshold crossing.

Figure 48: Cell Lower Threshold Status Register

Address	Register Name		Features and Bit Description	SPI4	SPI3	POR Value		
					tes if a cell voltage crossed ver threshold limit set by μ C. 0 \rightarrow Cell 1 voltage is more			
		D0	than Low Threshold limit set 1 → Cell 1 voltage is less than Low Threshold limit set					
		D1	 0 → Cell 2 voltage is more than Low Threshold limit set 1 → Cell 2 voltage is less than Low Threshold limit set 					
		D2	 0 → Cell 3 voltage is more than Low Threshold limit set 1 → Cell 3 voltage is less than Low Threshold limit set 					
0x02	cel_low_thsId_stat_reg	D3	 0 → Cell 4 voltage is more than Low Threshold limit set 1 → Cell 4 voltage is less than Low Threshold limit set 	R	R	0000_0000 POR_V5V		
		D4	 0 → Cell 5 voltage is more than Low Threshold limit set 1 → Cell 5 voltage is less than Low Threshold limit set 					
		D5	 0 → Cell 6 voltage is more than Low Threshold limit set 1 → Cell 6 voltage is less than Low Threshold limit set 					
		D6	 0 → Cell 7 voltage is more than Low Threshold limit set 1 → Cell 7 voltage is less than Low Threshold limit set 					
		D7	Reserved					

Figure 49: Cell Higher Threshold Status Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
			tes if a cell voltage crossed wer threshold limit set by μC .			
		D0	 0 → Cell 1 voltage is less than High Threshold limit set 1 → Cell 1 voltage is more than High Threshold limit 		R R	0000_0000 POR_V5V
		D1	 0 → Cell 2 voltage is less than High Threshold limit set 1 → Cell 2 voltage is more than High Threshold limit 			
	cel_high_thsld_stat_reg	D2	 0 → Cell 3 voltage is less than High Threshold limit set 1 → Cell 3 voltage is more than High Threshold limit 	R		
0x03		D3	 0 → Cell 4 voltage is less than High Threshold limit set 1 → Cell 4 voltage is more than High Threshold limit 			
		D4	 0 → Cell 5 voltage is less than High Threshold limit set 1 → Cell 5 voltage is more than High Threshold limit 			
		D5	 0 → Cell 6 voltage is less than High Threshold limit set 1 → Cell 6 voltage is more than High Threshold limit 			
		D6	 0 → Cell 7 voltage is less than High Threshold limit set 1 → Cell 7 voltage is more than High Threshold limit 			
		D7	Reserved			

am

Figure 50: Cell Reference Status Register

Address	Register Name	Feat	ures and Bit Description	SPI4	SPI3	POR Value													
	0x04 cel_ref_stat_reg	referen	es which cell has reached the ce value at least once. This s cleared when new reference is d.																
		D1													D0	$0 \rightarrow$ Cell 1 voltage is less than reference voltage $1 \rightarrow$ Cell 1 voltage is more than reference voltage			
			D1	 0 → Cell 2 voltage is less than reference voltage 1 → Cell 2 voltage is more than reference voltage 															
			D2	 0 → Cell 3 voltage is less than reference voltage 1 → Cell 3 voltage is more than reference voltage 															
0x04		cel_ref_stat_reg D3	 0 → Cell 4 voltage is less than reference voltage 1 → Cell 4 voltage is more than reference voltage 	R	R	0000_0000 POR_V5V													
			 0 → Cell 5 voltage is less than reference voltage 1 → Cell 5 voltage is more than reference voltage 																
	D5	 0 → Cell 6 voltage is less than reference voltage 1 → Cell 6 voltage is more than reference voltage 																	
		D6	 0 → Cell 7 voltage is less than reference voltage 1 → Cell 7 voltage is more than reference voltage 																
		D7	Reserved																

Figure 51: Temperature Status Register

Address	Register Name	Featu	Features and Bit Description		SPI3	POR Value
			Indicates the status of temperature monitors.			
	D0	 0 → Ambient temperature is less than warning threshold 1 → Ambient temperature is more than warning threshold 				
		D1	 0 → Internal temperature is less than warning threshold 1 → Internal temperature is more than warning threshold 			
0x05 temp_stat_reg	D2	 0 → Ambient temperature is less than maximum threshold 1 → Ambient temperature is more than maximum threshold 	R	R	0000_0000 POR_V5V	
		D3	 0 → Internal temperature is less than maximum threshold 1 → Internal temperature is more than maximum threshold 	-		
		D7:D4	Reserved			

Figure 52: Zero Cross Status Register

Address	Register Name	Featu	res and Bit Description	SPI4	SPI3	POR Value	
		zero volta during su indirectly	Indicates which cell voltage has crossed zero voltage and reached negative during sudden loading condition. This indirectly indicates the increasing status of cell internal impedance.				
					D0 $\begin{array}{c} 0 \rightarrow \text{Cell 1 voltage is normal} \\ 1 \rightarrow \text{Cell 1 voltage has} \\ \text{crossed zero voltage towards} \\ \text{negative direction} \end{array}$		
		D1	$0 \rightarrow \text{Cell 2 voltage is normal}$ $1 \rightarrow \text{Cell 2 voltage has}$ crossed zero voltage towards negative direction		R		
		D2	$0 \rightarrow \text{Cell 3 voltage is normal}$ $1 \rightarrow \text{Cell 3 voltage has}$ crossed zero voltage towards negative direction	R			
0x06	zero_crs_stat_reg	D3	0 → Cell 4 voltage is less than reference voltage 1 → Cell 4 voltage is more than reference voltage				
	D4 D5 D6	D4	0 → Cell 5 voltage is normal 1 → Cell 5 voltage has crossed zero voltage towards negative direction				
		D5	$0 \rightarrow \text{Cell } 6 \text{ voltage is normal}$ $1 \rightarrow \text{Cell } 6 \text{ voltage has}$ crossed zero voltage towards negative direction				
		D6	$0 \rightarrow \text{Cell 7 voltage is normal}$ $1 \rightarrow \text{Cell 7 voltage has}$ crossed zero voltage towards negative direction				
		D7	Reserved				

Figure 53: Cell1 Voltage LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x07	cell1_volt_lsb_reg		tage measured. 8 least nt bits of 12-bit ADC code of	R	R	0000_0000 POR_V5V
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 54: Cell1 Voltage MSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x08	0x08 cell1_volt_msb_reg		tage measured. 4 most nt bits of 12-bit ADC code of	R	R	0000_0000
0,00		D3:D0	Bit11 to Bit8 of ADC code	i.		POR_V5V
		D7:D4 Reserved				

Figure 55: Cell2 Voltage LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x09	Cell2_volt_lsb_reg	Cell2 voltage measured. 8 least significant bits of 12-bit ADC code of Cell2		R	R	0000_0000 POR_V5V
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 56: Cell2 Voltage MSB Register

Address	Register Name	Featu	res and Bit Description	SPI4	SPI3	POR Value
0x0A cell2 volt msb reg			tage measured. 4 most nt bits of 12-bit ADC code of	R	R	0000_0000
UNUA	0x0A cell2_volt_msb_reg	D3:D0	Bit11 to Bit8 of ADC code	K	N	POR_V5V
		D7:D4	Reserved			

Figure 57: Cell3 Voltage LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x0B	cell3_volt_lsb_reg	Cell3 voltage measured. 8 least significant bits of 12-bit ADC code of Cell3		R	R	0000_0000 POR_V5V
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 58: Cell3 Voltage MSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x0C	cell3_volt_msb_reg	Cell3 voltage measured. 4 most significant bits of 12-bit ADC code of Cell3		R	R	0000_0000
	oxoc cens_von_msb_reg	D3:D0	Bit11 to Bit8 of ADC code			POR_V5V
		D7:D4 Reserved				

Figure 59: Cell4 Voltage LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x0D	cell4_volt_lsb_reg	Cell4 voltage measured. 8 least significant bits of 12-bit ADC code of Cell4		R	R	0000_0000 POR_V5V
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 60: Cell4 Voltage MSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x0E cell4_volt_msb_reg			tage measured. 4 most nt bits of 12-bit ADC code of	R	R	0000_0000
UNUL		D3:D0	Bit11 to Bit8 of ADC code	i.	i.	POR_V5V
		D7:D4	Reserved			

Figure 61: Cell5 Voltage LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x0F	cell5_volt_lsb_reg	Cell5 voltage measured. 8 least significant bits of 12-bit ADC code of Cell5		R	R	0000_0000 POR_V5V
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 62: Cell5 Voltage MSB Register

Address	Register Name	Featu	res and Bit Description	SPI4	SPI3	POR Value
0x10	0x10 cell5_volt_msb_reg	Cell5 voltage measured. 4 most significant bits of 12-bit ADC code of Cell5		R	R	0000_0000 POR_V5V
- CATO		D3:D0				
		D7:D4	Reserved			

Figure 63: Cell6 Voltage LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x11	cell6_volt_lsb_reg	Cell6 volta significan Cell6	R	R	0000_0000 POR_V5V	
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 64: Cell6 Voltage MSB Register

Address	Register Name	Featu	res and Bit Description	SPI4	SPI3	POR Value
0x12 cell6_volt_msb_reg		tage measured. 4 most nt bits of 12-bit ADC code of	R	R	0000_0000	
0712		D3:D0	Bit11 to Bit8 of ADC code	I.	IX.	POR_V5V
			Reserved			

Figure 65: Cell7 Voltage LSB Register

POR Address **Register Name** Features and Bit Description SPI4 SPI3 Value Cell7 voltage measured. 8 least significant bits of 12-bit ADC code of 0000_0000 0x13 cell7_volt_lsb_reg R R Cell7 POR_V5V D7:D0 Bit7 to Bit0 of ADC code

Figure 66: Cell7 Voltage MSB Register

Address	Register Name	Featu	res and Bit Description	SPI4	SPI3	POR Value
0x14	0x14 cell7_volt_msb_reg	Cell7 voltage measured. 4 most significant bits of 12-bit ADC code of Cell7		R	R	0000_0000
		D3:D0	Bit11 to Bit8 of ADC code			POR_V5V
		D7:D4	Reserved			

Figure 67: Temperature Input1 LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x15	temp_in1_lsb_reg	Temperature sensor input1 measured. 8 least significant bits of 12-bit ADC code of temperature input1.		R	R	0000_0000 POR_V5V
		D7:D0	Bit7 to Bit0 of ADC code			

Figure 68: Temperature Input1 MSB Register

Address	Register Name	Featur	es and Bit Description	SPI4	SPI3	POR Value
0x16	temp_in1_msb_reg	measure	Temperature sensor input1 measured. 4 most significant bits of 12-bit ADC code of temperature input1.		R	0000_0000 POR V5V
		D3:D0	Bit11 to Bit8 of ADC code			1011_050
			Reserved			

Figure 69:

Temperature Input2 LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x17	temp_in2_lsb_reg	Temperature sensor input2 measured. 8 least significant bits of 12-bit ADC code of temperature input1.		R	R	0000_0000 POR_V5V
			D7:D0 Bit7 to Bit0 of ADC code			

Figure 70:

Temperature Input2 MSB Register

Address	Register Name	Featur	es and Bit Description	SPI4	SPI3	POR Value
0x18	0x18 temp_in2_msb_reg	Temperature sensor input2 measured. 4 most significant bits of 12-bit ADC code of temperature input2.		R	R	0000_0000
		D3:D0	Bit11 to Bit8 of ADC code			POR_V5V
			Reserved			

Figure 71: SPI3 Status Register

Address	Register Name	Feat	ures and Bit Description	SPI4	SPI3	POR Value
		This register has status of the latest SPI3 operation.				
	D0	$0 \rightarrow$ No CRC error. $1 \rightarrow$ CRC error for data from Master to Slave				
0x19	0x19 spi3_sts_reg	D1	$0 \rightarrow$ No CRC error. $1 \rightarrow$ CRC error for data from Slave to Master	R	R	0000_0000 POR_V5V
		D2	 0 → Start address allocation process write pass 1 → Start address allocation process write fail 			
		D7:D3	Reserved			

Configuration and 3-Wire SPI Interface Related Registers

Figure 72: Device Address for Address Allocation Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x1A	dadd_for_allc_reg	allocation. In the process the μC address in this	dress for address he address allocation : writes top device register. Address rved as broadcast	R/W	R/W	0000_0000 POR_VSUP
		D5:D0 Device address				
			D7:D6 Reserved			

Figure 73: Allocated Device Address Register

Address	Register Name	Features a	SPI4	SPI3	POR Value	
	Final device ac allocation proc			0000 0000		
0x1B	0x1B allcd_dev_add_reg	D5:D0	Device address	R	R	POR_VSUP
		D7:D6	Reserved			

Figure 74:

Device Configuration Setting Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
		Selects SPI3 fr	requency of operation.			
0x1C	dev_cnfg_setg_reg	D1:D0	$00 \rightarrow 5 \text{ KHz}$ $01 \rightarrow 20 \text{ KHz}$ $10 \rightarrow 40 \text{ KHz}$ $11 \rightarrow \text{Reserved}$	R/W	-	0000_0000 POR_VSUP
		D7:D2	Reserved			

Figure 75:

Temperature Threshold Setting Register

Register Name	F	Features and Bit Description						SPI4	SPI3	POR Value
	Sets ove	er-tempervn flag the over tee threshold of the over tee tee tee tee tee tee tee tee tee t	rature nresho empera old sele 3.165 3.231 3.297 3.363 3.429 3.495 empera old sele	warnir ld. ature w ection 0110 0111 1000 1001 1010 1011 ature sh	varning 3.561 3.627 3.693 3.759 3.825 3.891	and flag <u>Code</u> 1100 1101 1111 - - vn flag	Value 3.957 4.023 4.089 4.155 - -	SPI4 R/W	SPI3 R/W	
		0000 0001	3.165 3.231	0110 0111	3.561 3.627	1100 1101	3.957 4.023			
		0010 0011 0100 0101	3.297 3.363 3.429 3.495	1000 1001 1010 1011	3.693 3.759 3.825 3.891	1110 1111 - -	4.089 4.155			
	-	shutdov D3:D0 tflg_tshld_ setg_reg	shutdown flag th D3:D0 Over te D3:D0 Over te 0000 0001 0010 0011 0100 0111 0100 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0000 0001 0001 0011 0101 0111	shutdown flag thresho D3:D0 Over tempera threshold sele Code Value 0000 3.165 0001 3.231 0010 3.297 0011 3.363 0100 3.429 0101 3.495 D7:D4 Over tempera threshold sele Code Value 0000 3.165 0000 3.165 0000 3.165 0000 3.165 0010 3.297 0101 3.495	shutdown flag threshold. D3:D0 Over temperature w threshold selection Code Value Code 0000 3.165 0110 0001 3.231 0111 0010 3.297 1000 0011 3.363 1001 0100 3.429 1010 0101 3.495 1011 0100 3.429 1010 0101 3.495 1011 0101 3.495 1011 0100 3.165 0110 0000 3.165 0110 0101 3.231 0111 0000 3.165 0110 0001 3.231 0111 0010 3.231 0111 0010 3.231 0111 0010 3.297 1000 0011 3.363 1001 0100 3.429 1010	shutdown flag threshold. D3:D0 Over temperature warning threshold selection Code Value Code Value 0000 3.165 0110 3.561 0001 3.231 0111 3.627 0010 3.297 1000 3.693 0010 3.297 1000 3.693 0010 3.297 1000 3.693 0011 3.363 1001 3.759 0100 3.429 1010 3.825 0101 3.495 1011 3.891 D7:D4 Over temperature shutdow threshold selection D7:D4 Over temperature shutdow threshold selection <u>Code Value Code Value 0000 3.165 0110 3.561 0000 3.165 0110 3.561 0001 3.231 0111 3.627 0000 3.165 0110 3.561 0010 3.297 1000 3.693 0010 3.297 1000 3.693 0011 3.363 1001 3.759 </u>	$tflg_tshld_setg_reg$ D3:D0 Over temperature warning flag threshold selection $\frac{\boxed{\text{Code Value Code Value Code}}{0000 3.165 0110 3.561 1100} \\ \frac{\boxed{\text{Code Value Code Value Code}}{0001 3.231 0111 3.627 1101} \\ \frac{\boxed{\text{O010} 3.297 1000 3.693 1110}}{0011 3.363 1001 3.759 1111} \\ \frac{\boxed{\text{O100} 3.429 1010 3.825 -}}{0101 3.495 1011 3.891 -} \\ \end{array}$ D7:D4 Over temperature shutdown flag threshold selection $\frac{\boxed{\text{Code Value Code Value Code}}{0000 3.165 0110 3.561 1100} \\ \frac{\boxed{\text{Code Value Code Value Code}}{0000 3.165 0110 3.561 1100} \\ \frac{\boxed{\text{Code Value Code Value Code}}{0001 3.231 0111 3.627 1101} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1110} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1110} \\ 0011 3.363 1001 3.759 1111} \\ \frac{\boxed{\text{O100} 3.429 1010 3.825 -} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1110} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1111} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1110} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1100} \\ \frac{\boxed{\text{O101} 3.297 1000 3.693 1100} \\ \frac{\boxed{\text{O101} 3.297 100$	$tflg_tshld_setg_reg$ $D7:D4$ $D7:D4 D7:D4 D7:D$	shutdown flag threshold. D3:D0 Over temperature warning flag threshold selection	shutdown flag threshold. D3:D0 Over temperature warning flag threshold selection

Figure 76: Timer Control Register

Address	Register Name	Features	s and Bit Description	SPI4	SPI3	POR Value
		D2:D0	$000 \rightarrow 25\%$ duty cycle $001 \rightarrow 15\%$ duty cycle $010 \rightarrow 20\%$ duty cycle $011 \rightarrow 30\%$ duty cycle $100 \rightarrow 35\%$ duty cycle $101 \rightarrow 40\%$ duty cycle $110 \rightarrow 45\%$ duty cycle $111 \rightarrow 50\%$ duty cycle			
0x1E	timer_cntl_reg	D4:D3	00 → 1s time slot 01 → 8s time slot 10 → 16s time slot 11 → 32s time slot	R/W	R/W	0000_0000 POR_VSUP
	D6:D5	D6:D5 $ \begin{array}{c} 00 \rightarrow 100 \text{ KHz} \\ 01 \rightarrow 25 \text{ KHz} \\ 10 \rightarrow 50 \text{ KHz} \\ 11 \rightarrow 200 \text{ KHz} \end{array} $				
		D7	$0 \rightarrow 5$ clock cycles for comparator $1 \rightarrow 15$ clock cycles for comparator			

Figure 77: Reference DAC Code LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x1F ref_dcod_lsb_reg	Least Significa code for settin	- R/W	R/W	0000_0000 POR_VSUP		
	D7:D0 Bit7 to Bit0 of DAC code					

Figure 78:

Reference DAC Code MSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
		Most Signific code for sett				
0x20	ref_dcod_msb_reg	D3:D0	Bit11 to Bit8 of DAC code	R/W	R/W	0000_0000 POR_VSUP
		D7:D4	Reserved			

Figure 79:

Higher Limit DAC Code LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x21 hlmt_dcod_lsb_reg	Least Significa code for settin	- R/W	R/W	0000_0000		
	D7:D0 Bit7 to Bit0 of DAC code		10 00	10 00	POR_VSUP	

Figure 80:

Higher Limit DAC Code MSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
		Most Signifi code for set				
0x22	0x22 hlmt_dcod_msb_reg	D3:D0	Bit11 to Bit8 of DAC code	R/W	R/W	0000_0000 POR_VSUP
		D7:D4	Reserved			

Figure 81: Lower Limit DAC Code LSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x23 llmt_dcod_lsb_reg	Least Significa code for settin	R/W	R/W	0000_0000		
0,25	IIIII_ucou_IIID_ICg	D7:D0	Bit7 to Bit0 of DAC code	10,00	10 00	POR_VSUP

Figure 82: Lower Limit DAC Code MSB Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
		Most Signifi code for set				
0x24	0x24 IImt_dcod_msb_reg	D3:D0	Bit11 to Bit8 of DAC code	R/W	R/W	0000_0000 POR_VSUP
		D7:D4	Reserved			

Figure 83:

Device Address and Broadcast Command SPI Operation Register

Address	Register Name	Feat	Features and Bit Description		SPI3	POR Value
		Device a register	nddress/ broadcast command			
			If spi3_cmd_reg [D3-D1] = 001/010 Address of Device to be accessed. (000000 address is broadcast address)			
0x25	spop_dadd_ bcmd_reg	D5:D0	If spi3_cmd_reg [D3-D1] = 100 Broadcast communication commands. 000000 \rightarrow No operation 000001 \rightarrow Timer control register write 000010 \rightarrow Cell reference DAC code write 000011 Cell lower limit DAC code write 000100 \rightarrow Cell higher limit DAC code write	R/W	_	0000_0000 POR_V5V
			If spi3_cmd_reg [D3-D1] = 101 000000 → Data of register wrop_data_reg is written to address stored in spop_reg_ add_reg in all devices.			
		D7:D6	Reserved (accessible only in Master mode)			

Figure 84:

SPI Operation Register Address Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
			Address of register to be accessed during 3-wire read/write operation in the device selected in spop_dadd_ bcmd_reg			0000 0000
0x26	0x26 spop_reg_add_reg	D6:D0	Address of Register to be accessed (R/W)	R/W	-	0000_0000 POR_V5V
	D7:D4					

Figure 85:

SPI Write Operation Data Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x27	wrop_data_reg	Data to be written in the register addressed by spop_reg_add_reg of device selected in spop_dadd_ bcmd_reg during SPI3 write operation.		R/W	_	0000_0000 POR V5V
	D7:D0	Bit7 to Bit0 of accessed register (accessible only in Master mode)			101_030	

Figure 86: SPI3 Command Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
		ommand register. Register is the SPI3 transaction is				
	D0	 0 → No SPI3 operation 1 → Start SPI3 operation corresponding to command code 				
0x28	spi3_cmd_reg	D3:D1	$000 \rightarrow \text{Reserved}$ $001 \rightarrow \text{Slave register Read}$ $010 \rightarrow \text{Slave register Write}$ $011 \rightarrow \text{Start address}$ allocation process $100 \rightarrow \text{Broadcast}$ configuration command $101 \rightarrow \text{Broadcast Slave}$ register Write $110 \rightarrow \text{Reserved}$ $111 \rightarrow \text{Reserved}$	R/W	-	0000_0000 POR_V5V
		D7:D4	Reserved			

Figure 87: SPI Read Operation Data Register

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x29	rdop_data_reg	Read data from the register addressed by spop_reg_add_reg of device selected in spop_dadd_ bcmd_reg during SPI3 read operation.		R/W	R/W	0000_0000 POR VSUP
		D7:D0	Bit7 to Bit0 of accessed register (accessible only in Master mode)			

Figure 88: Feature Selection Register 1

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x2A	feat_sel_reg_1	Feature selection register1.				
		D0	1 → Zero cross detection enable	R/W		0000_0000 POR_VSUP
		D2:D1	Zero cross detection filter setting $00 \rightarrow 8\mu s$ $01 \rightarrow 6\mu s$ $10 \rightarrow 4\mu s$ $11 \rightarrow 2\mu s$			
		D3	Reserved			
		D4	1 → External resistor divider enable		R/W	
		D5	 0 → Cell reference is generated from DAC 1 → Cell reference is supplied externally on VREF_IN pin 			
		D6	 0 → Cell Lower/Higher limit is generated from DAC 1 → Cell Lower/Higher limit is supplied externally on CELL_THL and CELL_THU pins 			
		D7	Reserved			

Figure 89: Feature Selection Register 2

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
		Feature sele	ction register2.			
0x2B	feat_sel_reg_2	D1:D0	FD_OUT pad configuration 10 → Optocoupler driver 11 → Normal Pad	R/W	-	0000_0010 POR_V5V
		D7:D2	Reserved			

Note(s):

1. Registers from address 0x2C to 0x2F are 'Reserved'.

OTP Reflection Registers

Figure 90: OTP Reflection Register 1

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x30	otp_refln_reg_1	D7:D0	OTP bits [0:7] Chip ID [0:7]	R	R	0000_0000 POR_V5V

Figure 91: OTP Reflection Register 2

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x31	otp_refln_reg_2	D7:D0	OTP bits [8:15] Chip ID [8:15]	R	R	0000_0000 POR_V5V

Figure 92: OTP Reflection Register 3

Address	Register Name	Feature	Features and Bit Description		SPI3	POR Value
0x32	otp_refln_reg_3	D7:D0	OTP bits [16:23] Chip ID [16:18], OTP bits [19:23]	R	R	0000_0000 POR_V5V

Figure 93:

OTP Reflection Register 4

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x33	otp_refln_reg_4	D7:D0	OTP bits [24:31]	R	R	0000_0000 POR_V5V

Figure 94: OTP Reflection Register 5

Address	Register Name	Feature	Features and Bit Description		SPI3	POR Value
0x34	otp_refln_reg_5	D7:D0	OTP bits [32:39]	R	R	0000_0000 POR_V5V

Figure 95: OTP Reflection Register 6

Address	Register Name	Feature	Features and Bit Description		SPI3	POR Value
0x35	otp_refln_reg_6	D7:D0	OTP bits [40:47]	R	R	0000_0000 POR_V5V

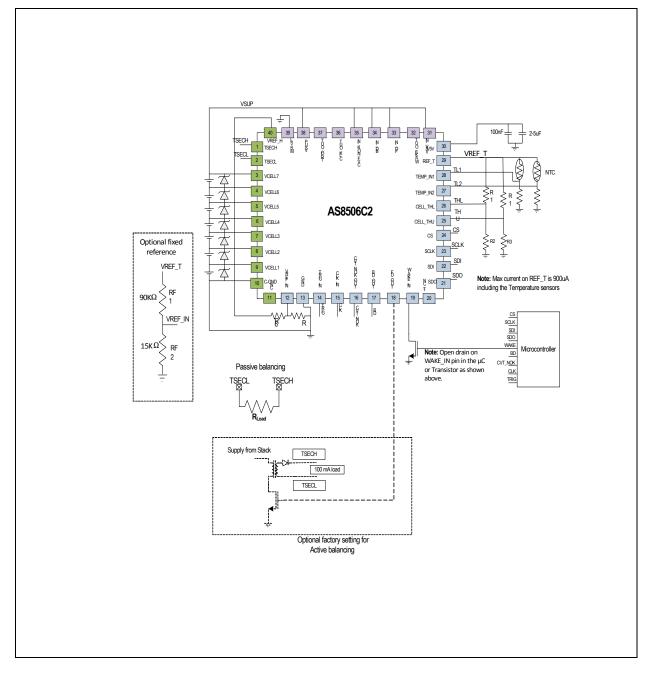
Figure 96: OTP Reflection Register 7

Address	Register Name	Features and Bit Description		SPI4	SPI3	POR Value
0x36	otp_refln_reg_7	D7:D0	OTP bits [48:55]	R	R	0000_0000 POR_V5V

Figure 97: OTP Reflection Register 8

Address	Register Name	Feature	Features and Bit Description		SPI3	POR Value
0x37	otp_refln_reg_8	D7:D0	OTP bits [56:63]	R	R	0000_0000 POR_V5V

Note(s):


1. Registers from address 0x38 to 0x39 are 'Reserved'.

2. Registers from address 0x3A to 0x4E are OTP and Test registers. These are for factory use.

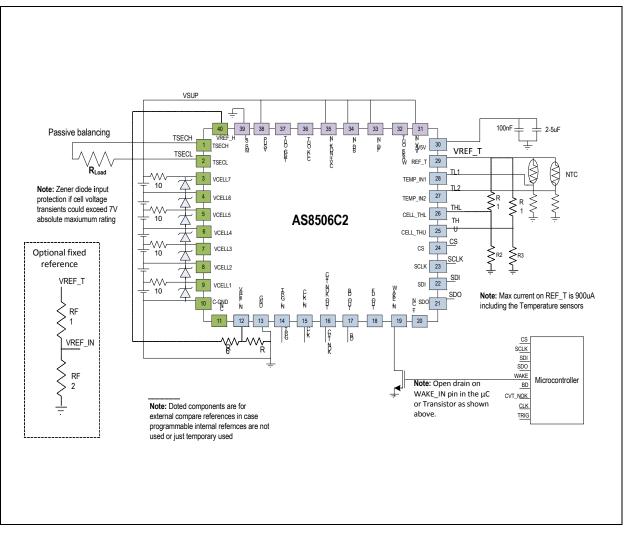

Application Information

Figure 98: Application Schematic with Single Device

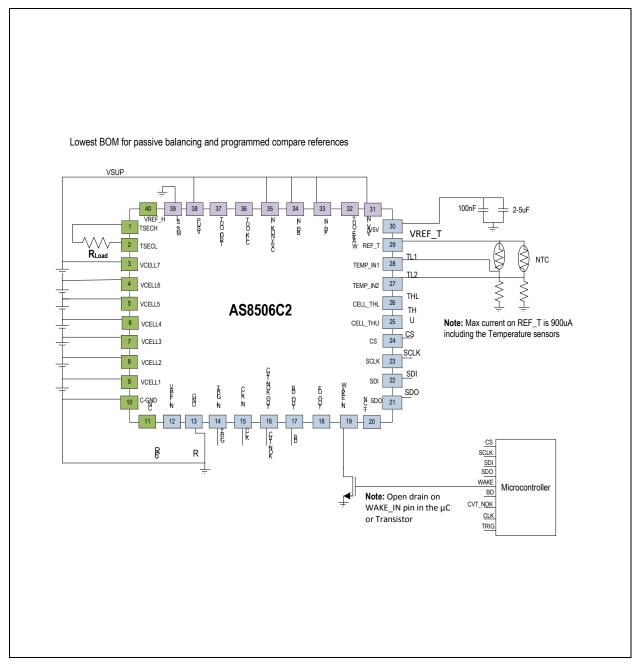

amu

Figure 99: Application Schematic with Single Device Passive Balancing-Option 1

Figure 100: Application Schematic with Single Device Passive Balancing-Option 2

am

Passive Balance

Passive balance is to dissipate the energy from the cell with the higher cell voltage to the reference value (average of the stack e.g. max cell voltage in constant voltage charge phase or mean cell voltage as generated by resitor divider).

Resistor value should be selected based on the cell chemistry and voltage limits. Maximum current capability of internal shuttle switch is 100mA. Internal resistance of the shuttle switch typically is 5Ω .

Active Balance

In the active balance device charge the cells which are lower than the reference voltage. This is a method of charge transfer from the stack to the cell.

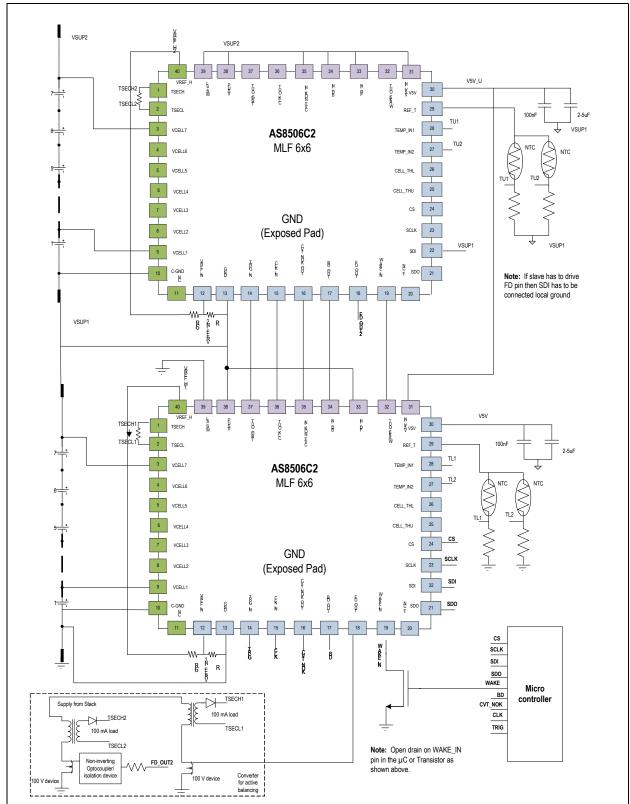
Flyback converter is used for this charge transfer. Active balancing mode need to be enabled by factory setting. It is not available for the default ASSP.

Flyback Converter (with external transformer)

The high-efficiency, high-voltage, DC-DC Flyback converter delivers current of 100mA to the lithium ion cell when the secondary side of the Flyback transformer is connected to the cell terminals. This also gives the isolation between the primary supply and the load cell. The Flyback converter is designed to charge the lithium-ion battery cells during the balancing mode of the IC. It consists of a PWM waveform generator with variable duty cycle and a driver. This driver can drive an external MOSFET, (or) the optocoupler, (or) an isolation device based on the requirement. During the ON-state of the PWM waveform, the primary side of the Flyback transformer conducts and stores the energy. In the other phase the stored energy in the secondary is transferred to the cell which will be connected to the secondary side of the transformer. The converter always works in discontinuous current mode (DCM).

The advantages of this type of control system can be summarized as following:

- High-efficiency even at light load
- Intrinsically stable
- Simplicity

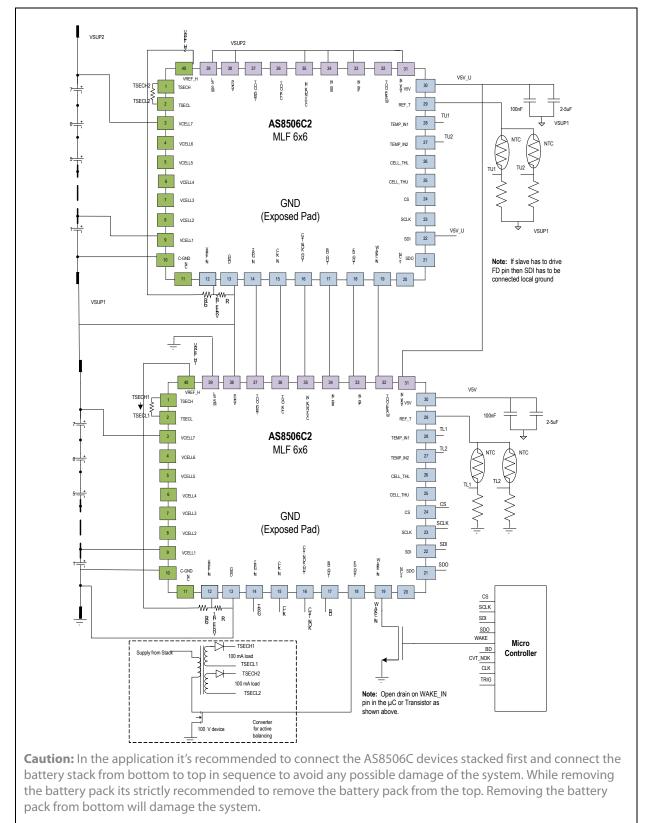

Solder Stress

To avoid shift of ADC / DAC reference from mechanical solder /board stress it is recommended to leave the exposed pad to the PCB open (not soldered). This pad is not required for thermal power dissipation reasons in case of passive balancing having typical not more than 100mW dissipated by sequential shuttle switches.

Figure 101: External Components

Component	Manufacturer Part Number	Manufacturer
Transformer	Transformer WE-FLEX 749196111	
Optocoupler	ACPL-M72T-000E	AVAGO TECHNOLOGIES

Figure 102: Application with Opto-Coupler/ Isolation Device



Caution: In the application it's recommended to connect the AS8506C devices stacked first and connect the battery stack from bottom to top in sequence to avoid any possible damage of the system. While removing the battery pack its strictly recommended to remove the battery pack from the top. Removing the battery pack from bottom will damage the system.

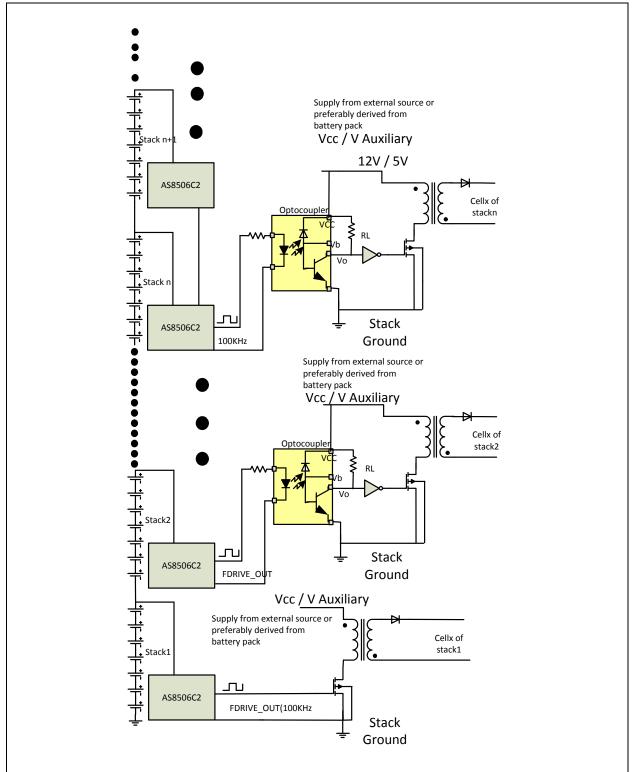
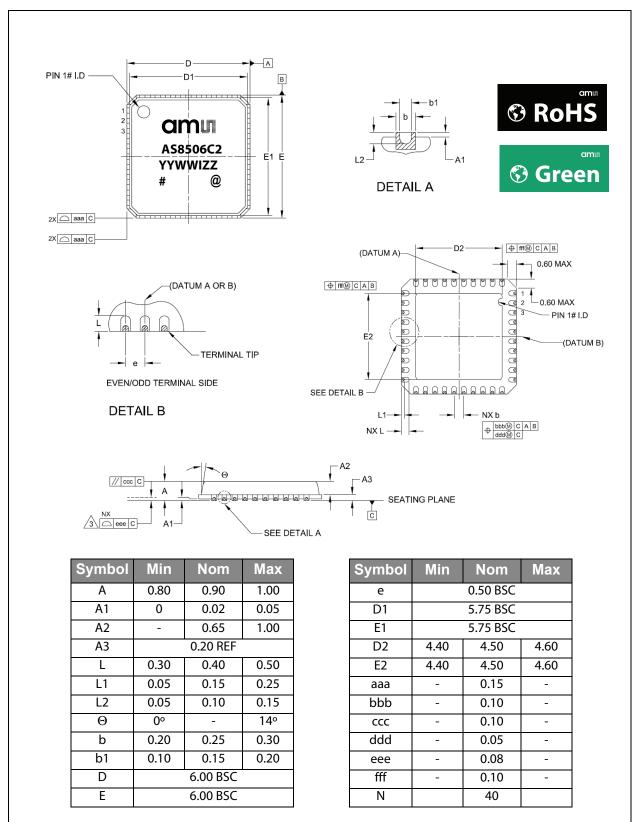

um

Figure 103: Application Schematic

amu

Figure 104: Application with Opto-Coupler Device Stackable to Higher Numbers


Caution:: In the application it's recommended to connect the AS8506C devices stacked first and connect the battery stack from bottom to top in sequence to avoid any possible damage of the system. While removing the battery pack its strictly recommended to remove the battery pack from the top. Removing the battery pack from bottom will damage the system.

Package Drawings & Markings

The AS8506C device is available in a 40-pin MLF (6x6) package.

Figure 105: **AS8506C-A Package Drawings and Dimensions**

Please refer to the Note(s) on next page.

Note(s):

- 1. Dimensions and toleranceing conform to ASME Y14.5M. 1994.
- 2. All dimensions are in millimeters (angles in degrees).
- 3. Bilateral coplanarity zone applies to the exposed pad as well as the terminal.
- 4. Radius on terminal is optional.
- 5. N is the number of terminals.

Figure 106:

Packaging Code YYWWIZZ@

YY	WW	I	ZZ	@
Last two digits of the year	Manufacturing week	Plant identifier	Assembly traceability code	Sublot identifier

Figure 107:

Version Identifier #

Empty	Α	S
Passive balancing	Active balancing	Standalone operation, passive balancing

Ordering & Contact Information

The devices are available as the standard products shown in Ordering Information.

Figure 10	8:
Ordering	Information

Ordering Code	Description	Delivery Form	Package	Reel Size
AS8506C-BQFP	Monitor and Balancer IC ⁽¹⁾	Tape and Reel	40-Pin MLF (6x6)	4000 pcs
AS8506C-BQFM	Monitor and Balancer IC $^{(1)}$	Tape and Reel	40-Pin MLF (6x6)	1000 pcs
AS8506C-BQFP-A	Monitor and Balancer IC ⁽²⁾	Tape and Reel	40-Pin MLF (6x6)	4000 pcs
AS8506C-BQFM-A	Monitor and Balancer IC ⁽²⁾	Tape and Reel	40-Pin MLF (6x6)	1000 pcs
AS8506C-BQFM-S	Monitor and Balancer IC ⁽³⁾	Tape and Reel	40-Pin MLF (6x6)	1000 pcs

Note(s):

1. For Passive balancing.

2. For Active balancing.

3. For stand alone operation without micro controller using external analog references to determine min, max cell volatge limits and balancing target voltage.

Not Recommended for New Designs!

ams AG is discontinuing production of this device. Final lifetime buy order must be placed by DECEMBER 31, 2017.

Buy our products or get free samples online at: www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at: www.ams.com/Document-Feedback

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

amu

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 1-02 (2014-Nov-06) to current revision 1-05 (2017-Jun-23)	Page			
1-02 (2014-Nov-06) to 1-03 (2015-Nov-17)				
Removed High-Precision Bandgap Reference sections				
Updated Figure 4	5			
Updated text under AS8506C System Operation	27			
Updated title of Figure 25	32			
Added Solder Stress section	81			
Updated Package Drawings & Markings section	85			
Updated Figure 109	87			
1-03 (2015-Nov-17) to 1-04 (2015-Dec-02)				
Removed High-Precision Bandgap Reference section				
Updated Figure 7	11			
Updated Figure 16 and added note under it	17			
Updated Figure 20	19			
Updated Figure 98	76			
Updated Figure 99	77			
Updated Figure 100	78			
Updated text under Solder Stress	80			
Updated Figure 102	81			
Updated Figure 103	82			
Updated Figure 104	83			
1-04 (2015-Dec-02) to 1-05 (2017-Jun-23)				
Update of document status				
Update of Ordering Information section by adding NRND statement	86			

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

- **General Description**
- 2 Key Benefits & Features
- 2 Applications

1

- 3 Block Diagram
- 4 Pin Assignment
- 8 Absolute Maximum Ratings
- **10** Typical Operating Characteristics

11 Electrical Characteristics

- 11 Device Level Specifications
- 12 Low Dropout Regulator (5V Output LDO)
- 13 Digital to Analog Converter
- 13 Analog to Digital Converter
- 14 Pre-Regulator
- 14 PWM Driver
- 15 PWM Oscillator
- 15 Oscillator for Digital Circuit
- 16 External Temperature Thresholds
- 17 Ron of the Shuttle Switches (Internal Switch for Charging/Discharging)
- 17 Over-Temperature Measurement
- 18 Weak Cell Detection (Voltage Comparator)
- 18 Power on Voltage Detection
- 19 Electrical Characteristics for Digital Inputs and Outputs

22 Detailed Description

- 22 Voltage Regulator (LDO_5V)
- 22 High Precision Bandgap (HPBG)
- 22 External Temperature Monitor and Measurement
- 23 Internal Temperature Monitor
- 23 PWM Generator
- 23 RC Oscillator
- 23 DAC for the Reference Generation
- 23 SAR ADC
- 24 Pre-Regulator
- 24 Cell Threshold
- 24 Weak Cell Detection
- 24 External Resistor Divider Control
- 25 PORs on Different Supplies
- 26 AS8506C System Operation
- 28 Functional State Diagram
- 29 Operating Modes
- 29 NORMAL Mode
- 31 Sleep Mode
- 31 Wait Mode
- 31 Wake Mode
- 32 Wake-Up Event
- 33 Trigger Event
- 35 Balancing Algorithm
- 36 Initialization Sequence

amu

- 38 Device Interface
- 38 Serial Peripheral Interface
- 39 SPI Write Operation
- 41 SPI Read Operation
- 43 Address Allocation Process
- 46 Communication to Slaves
- 46 Broadcast Communication
- 47 Communication with Individual Slave
- 49 SPI Timing Diagrams
- 50 SPI Protocol
- 51 System Timings
- 52 Register Space Description
- 52 Status Registers
- 65 Configuration and 3-Wire SPI Interface Related Registers
- 73 OTP Reflection Registers

76 Application Information

- 79 Passive Balance
- 79 Active Balance
- 79 Flyback Converter (with external transformer)
- 80 Solder Stress
- 84 Package Drawings & Markings
- 86 Ordering & Contact Information
- 87 RoHS Compliant & ams Green Statement
- 88 Copyrights & Disclaimer
- 89 Document Status
- 90 Revision Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by ams manufacturer:

Other Similar products are found below :

MP2602DQ-LF-P MP26053DQ-LF-Z MP2611GL-P NCP347MTAHTBG LM3658SD-AEV/NOPB MP2607DL-LF-P MP26121DQ-LF-P MP26123DR-LF-P MP2633GR-P MP2637GR-P BQ24212EVM-678 NCP1855FCCT1G MP2636GR-P FAN54063UCX MAX14680EWC+T MAX14634EWC+T DS2745U+T&R MAX14578EETE+T DS2781EVKIT+ DS2781E+T&R MP2605DQ-LF-P DS2710G+T&R MAX17040G+T MAX14525ETA+T MP2615GQ-P MAX14578EEWC+T LC05132C01NMTTTG MAX8971EWP+T MAX14630EZK+T MAX1873TEEE+T PSC5415A AUR9811DGD SN2040DSQR DS2715BZ+T&R MAX1508ZETA+T MAX14921ECS+T MAX77301EWA+T BD8668GW-E2 MAX16024PTBS+T DS2715Z+T&R MAX16024LTBZ18+T DS2782E+T&R DS2782G+T&R MAX1908ETI+T ISL95522IRZ ISL95522HRZ ARD00558 NCP4371AAEDR2G BD8665GW-E2 MAX8934EETI+T