ALPHA & OMEGA SEMICONDUCTOR	AO3423 20V P-Channel MOSFE					
General Description	Product Summary					
The AO3423 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch applications.	V_{DS} $I_{D} (at V_{GS}=-10V)$ $R_{DS(ON)} (at V_{GS}=-10V)$ $R_{DS(ON)} (at V_{GS}=-4.5V)$ $R_{DS(ON)} (at V_{GS}=-2.5V)$ Typical ESD protection	-20V -2A < 92mΩ < 118mΩ < 166mΩ HBM Class 2				
Top View $Bottom View$ G G G G G G G G G G						
Parameter Symbol	Maximum	Units				
Drain-Source Voltage V _{DS}	-20	V				
Gate-Source Voltage V _{GS}	±12	V				
$\begin{array}{c} \text{Continuous Drain} & $T_A=25^{\circ}$C$ \\ \text{Current} & $T_A=70^{\circ}$C$ \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_D \\ I_D \end{array} \\ \end{array}$	-2 -2 -2	A				
Pulsed Drain Current ^C I _{DM}	-17					
	-11					
T _A =25°C	<u> </u>	W				
Power Dissipation ^B $T_{A}=25$ P_{D}	1.4	۳ ۳				
T_A=25 °CP_DPower Dissipation BT_A=70 °CP_DJunction and Storage Temperature RangeT_J, T_{STG}	1.4 0.9					
T_A=25 C P_D Power Dissipation B T_A=70 C Junction and Storage Temperature Range T_J, T_{STG} Thermal Characteristics Parameter Symbol	1.4 0.9					
T_A=25 °C P_D Power Dissipation B T_A=70 °C P_D Junction and Storage Temperature Range T_J, T_{STG} Thermal Characteristics Parameter Maximum Junction-to-Ambient A t ≤ 10s	1.4 0.9 -55 to 150	Ĵ				
Power Dissipation B $T_A=25$ C P_D Junction and Storage Temperature Range T_J , T_{STG} Thermal Characteristics Parameter Symbol	1.4 0.9 -55 to 150 Typ Max	°C Units				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC I	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-20			V
1	Zero Gate Voltage Drain Current	V _{DS} =-20V, V _{GS} =0V				-1	μA
IDSS	Zero Gale Voltage Drain Current		T_=55℃			-5	μΛ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				±10	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$		-0.5	-0.85	-1.2	V
I _{D(ON)}	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V		-17			Α
		V _{GS} =-10V, I _D =-2A			76	92	m 0
R	Static Drain-Source On-Resistance		T _J =125℃		99	119	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-2A			94	118	mΩ
		V _{GS} =-2.5V, I _D =-1A		128	166	mΩ	
9 _{FS}	Forward Transconductance	V _{DS} =-5V, I _D =-2A		6.8		S	
V _{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.76	-1	V	
I _s	Maximum Body-Diode Continuous Cur	rent				-1.5	Α
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance			250	325	400	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-10V, f=	=1MHz	40	63	85	pF
C _{rss}	Reverse Transfer Capacitance			22	37	52	pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1	MHz		11.2	17	Ω
SWITCH	NG PARAMETERS						
Q _g	Total Gate Charge				3.2	4.5	nC
Q _{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-10V	′, I _D =-2A		0.6		nC
Q_{gd}	Gate Drain Charge				0.9		nC
t _{D(on)}	Turn-On DelayTime				11		ns
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-10V	$R_{L}=5\Omega,$		5.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			22		ns
t _f	Turn-Off Fall Time				8		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-2A, dl/dt=100A/μs	S		6.1		ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =-2A, dl/dt=100A/μ	S		1.4		nC

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The

value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^{\circ}$ C, using ≤ 10 s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^{\circ}$ C. Ratings are based on low frequency and duty cycles to keep initialT₁=25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on $1n^2$ FR-4 board with 20z. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-00464
Version	В
Title	AO3423 Marking Description

SOT-23 PACKAGE MARKING DESCRIPTION

Green product

NOTE:

- P Package and product typeN Last digital of product number
- W Year and week code
- A Assembly location code
- L&T Assembly lot code

PART NO.	DESCRIPTION	CODE (PN)
AO3423	Green product	AS
AO3423L	Green product	AS

ALPHA & OMEGA SEMICONDUCTOR		Version	
			L
SOT23 PAC	KAGE OUTLINE		
		GAUGE PLANE SEATING PLANE	<u>m</u>
RECOMMENDED LAND PATTERN	DIMENSIONS IN MIL	LIMETERS D	IMENSIONS IN INCHES
	SYMBOLS DIMENSIONS IN MIL MIN NOM A 0.85 — A1 0.00 — A2 0.70 1.00 b 0.30 0.40 c 0.08 0.13 D 2.80 2.90 E 2.60 2.80 E1 1.40 1.60 e 0.95 BS(e1 1.90 BS(L 0.30 — θ1 0° 5°	MAX MIN 1.25 0.033 0.13 0.000 1.15 0.028 0.50 0.012 0.20 0.003 3.10 0.110 3.00 0.102 1.80 0.055	NOM MAX 0.049 0.005 0.039 0.045 0.016 0.020 0.005 0.008 0.114 0.122 0.110 0.118 0.063 0.071 0.037 BSC 0.075 BSC
UNIT: mm			

- 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE SPECIFIED.
- DIMENSION L IS MEASURED IN GAUGE PLANE.
 CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. ALL DIMENSIONS ARE IN MILLIMETERS.

V

18.00

SOT23-3L Carrier Tape

UNIT: MM

PACKAGE	A0	B0	К0	DO	D1	W	E1	F	P0	P1	P2	Т	A2	B5
SDT23-3L (8 mm)	3.05-3.40	3.00-3.38	1.20- 1.47	1.55 ±0.05	1.00 ±0.25	8.00 ±0.30	1.75 ±0.10	3.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.18 -0.25	0.84-1.24	2.29-2.69

SOT23-3L Reel - W1 - S G ż > -||-– v UNIT: MM TAPE SIZE REEL SIZE W W1 Н К S G М Ν R ø54.00 ±0.50 ø13.00 +0.50 -0.20 2.00 ±0.50 ø178 ø178.00 9.00 11.40 10.60 ø9.00 5.00 8 mm ±1.00 ±0.30 ±1.00

AOS Semiconductor Product Reliability Report

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

This AOS product reliability report summarizes the qualification result for AO3423. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO3423 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Reliability Stress Test Summary and Results
- IV. Reliability Evaluation

I. Product Description:

The AO3423 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation gate voltages as low as 2.5V. This device is suitable for use as a load switch applications.

Details refer to the datasheet.

II. Die / Package Information:

Process	AO3423 Standard sub-micron 20V P-Channel MOSFET
Package Type	SOT23
Lead Frame	Bare Cu
Die Attach	Ag Epoxy
Bond	Au & Cu Wire
Mold Material	Epoxy resin with silica filler
Moisture Level	Up to Level 1

III. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HTRB	Temp = 150°C, Vds=80% of Vdsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
MSL Precondition	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	2772 pcs	0	JESD22-A113
HAST	130°C ,85%RH, 33.3 psia, Vds = 80% of Vdsmax	96 hours	924 pcs	0	JESD22-A110
H3TRB	85°C , 85%RH, Vds = 80% of Vdsmax	1000 hours	693 pcs	0	JESD22-A101
Autoclave	121°C , 29.7psia, RH=100%	96 hours	1848 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C, air to air,	250 / 500 cycles	1848 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hrs	924 pcs	0	JESD22-A103
Power Cycling	∆ Tj = 100°C	15000 cycles	462 pcs	0	AEC Q101

Note: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 3.43 MTTF = 33270 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 3.43$ MTTF = $10^9 / FIT = 33270$ years

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C) Acceleration Factor [**Af**] = **Exp** [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Alpha & Omega manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3