General Description The AO3423 uses advanced trench technology to provide excellent $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, low gate charge and operation with gate voltages as low as 2.5 V . This device is suitable for use as a load switch applications.			Product Summary $V_{D S}$ I_{D} (at $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$) $R_{D S(O N)}$ (at $V_{G S}=-10 \mathrm{~V}$) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (at $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\left(\right.$ at $\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$) Typical ESD protection	$\begin{aligned} & -20 \mathrm{~V} \\ & -2 \mathrm{~A} \\ & <92 \mathrm{~m} \Omega \\ & <118 \mathrm{~m} \Omega \\ & <166 \mathrm{~m} \Omega \end{aligned}$ HBM Class 2
Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted				
Parameter		Symbol	Maximum	Units
Drain-Source Voltage		$\mathrm{V}_{\text {DS }}$	-20	V
Gate-Source Voltage		V_{GS}	± 12	V
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{\text {d }}$	-2	A
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		-2	
Pulsed Drain Current ${ }^{\text {c }}$		IDM	-17	
Power Dissipation ${ }^{\text {B }}$	$T_{A}=25^{\circ} \mathrm{C}$	P_{D}	1.4	W
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		0.9	
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to 150	${ }^{\circ}$

Thermal Characteristics					
Parameter		Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ${ }^{\text {A }}$	t $\leq 10 \mathrm{~s}$	$\mathrm{R}_{\text {өJA }}$	65	90	C/W
Maximum Junction-to-Ambient ${ }^{\text {AD }}$	Steady-State		85	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction-to-Lead	Steady-State	$\mathrm{R}_{\text {өJL }}$	43	60	C/W

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-20			V
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$			-5	
$\mathrm{I}_{\text {GSS }}$	Gate-Body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\text {DS }}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.5	-0.85	-1.2	V
$\mathrm{l}_{\mathrm{DON})}$	On state drain current	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=-5 \mathrm{~V}$	-17			A
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Static Drain-Source On-Resistance	$\mathrm{V}_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A}$		76	92	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		99	119	
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A}$		94	118	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}$		128	166	$\mathrm{m} \Omega$
gfs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A}$		6.8		S
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		-0.76	-1	V
$\mathrm{I}_{\text {S }}$	Maximum Body-Diode Continuous Current				-1.5	A
DYNAMIC PARAMETERS						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	250	325	400	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		40	63	85	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		22	37	52	pF
R_{g}	Gate resistance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		11.2	17	Ω
SWITCHING PARAMETERS						
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A}$		3.2	4.5	nC
Q_{gs}	Gate Source Charge			0.6		nC
Q_{gd}	Gate Drain Charge			0.9		nC
$\mathrm{t}_{\mathrm{D} \text { (on) }}$	Turn-On DelayTime	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \Omega, \\ & \mathrm{R}_{\mathrm{GEN}}=3 \Omega \end{aligned}$		11		ns
t_{r}	Turn-On Rise Time			5.5		ns
$\mathrm{t}_{\text {(offi) }}$	Turn-Off DelayTime			22		ns
$t_{\text {f }}$	Turn-Off Fall Time			8		ns
t_{rr}	Body Diode Reverse Recovery Time			6.1		ns
Q_{rr}	Body Diode Reverse Recovery Charge	$\mathrm{I}_{\mathrm{F}}=-2 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		1.4		nC

A. The value of $R_{\theta J A}$ is measured with the device mounted on $1 \mathrm{in}^{2} \mathrm{FR}-4$ board with 20 z . Copper, in a still air environment with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. The value in any given application depends on the user's specific board design.
B. The power dissipation P_{D} is based on $T_{J(M A X)}=150^{\circ} \quad \mathrm{C}$, using $\leqslant 10$ s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ} \mathrm{C}$. Ratings are based on low frequency and duty cycles to keep initialT ${ }_{j}=25^{\circ}$ C.
D. The $R_{\theta J A}$ is the sum of the thermal impedance from junction to lead $R_{\theta J L}$ and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using $<300 \mu$ s pulses, duty cycle 0.5% max
F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in ${ }^{2}$ FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ} \mathrm{C}$. The SOA curve provides a single pulse rating.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Gate Charge Test Circuit \& Waveform

Diode Recovery Test Circuit \& Waveforms

Document No.	PD-00464
Version	B
Title	AO3423 Marking Description

SOT-23 PACKAGE MARKING DESCRIPTION

NOTE:
P - Package and product type
N - Last digital of product number
W - Year and week code
A - Assembly location code
L\&T - Assembly lot code

PART NO.	DESCRIPTION	CODE (PN)
AO3423	Green product	AS
AO3423L	Green product	AS

Document No.	PO-00001
Version	L

SOT23 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.85	---	1.25	0.033	---	0.049	
A 1	0.00	---	0.13	0.000	---	0.005	
A 2	0.70	1.00	1.15	0.028	0.039	0.045	
b	0.30	0.40	0.50	0.012	0.016	0.020	
c	0.08	0.13	0.20	0.003	0.005	0.008	
D	2.80	2.90	3.10	0.110	0.114	0.122	
E	2.60	2.80	3.00	0.102	0.110	0.118	
E 1	1.40	1.60	1.80	0.055	0.063	0.071	
e	0.95 BSC						
e 1	1.90 BSC				0.037 BSC		
L	0.30	---	0.60	0.012	---	0.075 BSC	
$\theta 1$	0°	5°	8°	0°	5°	8°	

UNIT: mm

NOTE

1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH OR GATE BURRS.

MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
2. TOLERANCE $\pm 0.100 \mathrm{~mm}(4 \mathrm{mil})$ UNLESS OTHERWISE SPECIFIED.
3. DIMENSION L IS MEASURED IN GAUGE PLANE.
4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
5. ALL DIMENSIONS ARE IN MILLIMETERS.

SOT23-3L Carrier Tape

UNIT: MM

PACKAGE	A0	B0	K0	D0	D1	W	$E 1$	F	$P 0$	$P 1$	P2	T	A2	B2
SOT23-3L (8 mm)	$3.05-3.40$	$3.00-3.38$	$1.20-1.47$	1.55 ± 0.05	1.00 ± 0.25	8.00 ± 0.30	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	$0.18-0.25$	$0.84-1.24$	$2.29-2.69$

$\underline{\text { SOT23-3L Reel }}$

$\rightarrow 1-1-w$

TAPE SIZE	REEL SIZE	M	N	W	W1	H	K	S	G	R	V
8 mm	Ф178	$\begin{gathered} \not \subset 178.00 \\ \pm 1.00 \end{gathered}$	$\begin{gathered} \varnothing 54.00 \\ \pm 0.50 \end{gathered}$	$\begin{gathered} 9.00 \\ \pm 0.30 \end{gathered}$	$\begin{aligned} & 11.40 \\ & \pm 1.00 \end{aligned}$	ф13.00 $+0.50$ -0.20	10.60	$\begin{gathered} 2.00 \\ \pm 0.50 \end{gathered}$	¢9.00	5.00	18.00

SOT23-3L Tape
Leader / Trailer \& Orientation

Unit Per Reel: 3000pcs

AOS Semiconductor Product Reliability Report

AO3423, revc

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc

This AOS product reliability report summarizes the qualification result for AO3423. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO3423 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Table of Contents:

I. Product Description
II. Package and Die information
III. Reliability Stress Test Summary and Results
IV. Reliability Evaluation

I. Product Description:

The AO3423 uses advanced trench technology to provide excellent $\mathrm{R}_{\mathrm{DS}\left(\mathrm{ON}^{\prime}\right)}$, low gate charge and operation gate voltages as low as 2.5 V . This device is suitable for use as a load switch applications.

Details refer to the datasheet.

II. Die / Package Information:

AO3423	
Process	AOB42 Standard sub-micron
Package Type	20V P-Channel MOSFET

III. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	$\begin{gathered} \text { Temp }=150^{\circ} \mathrm{C}, \\ \text { Vgs }=100 \% \text { of Vgsmax } \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	924 pcs	0	JESD22-A108
HTRB	$\text { Temp }=150^{\circ} \mathrm{C},$ Vds=80\% of Vdsmax	$\begin{gathered} 168 / 500 / \\ 1000 \text { hours } \end{gathered}$	924 pcs	0	JESD22-A108
MSL Precondition	$168 \mathrm{hr} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}+$ 3 cycle reflow@260ㄴ (MSL 1)	-	2772 pcs	0	JESD22-A113
HAST	$\begin{gathered} 130^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \\ 33.3 \text { psia, } \\ \text { Vds }=80 \% \text { of Vdsmax } \end{gathered}$	96 hours	924 pcs	0	JESD22-A110
H3TRB	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$, Vds = 80\% of Vdsmax	1000 hours	693 pcs	0	JESD22-A101
Autoclave	$\begin{gathered} 121^{\circ} \mathrm{C}, 29.7 \mathrm{psia}, \\ \mathrm{RH}=100 \% \end{gathered}$	96 hours	1848 pcs	0	JESD22-A102
Temperature Cycle	$\begin{gathered} -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}, \\ \text { air to air, } \end{gathered}$	$\begin{aligned} & 250 / 500 \\ & \text { cycles } \end{aligned}$	1848 pcs	0	JESD22-A104
HTSL	Temp $=150^{\circ} \mathrm{C}$	1000 hrs	924 pcs	0	JESD22-A103
Power Cycling	$\Delta \mathrm{Tj}=100^{\circ} \mathrm{C}$	$\begin{aligned} & 15000 \\ & \text { cycles } \end{aligned}$	462 pcs	0	AEC Q101

Note: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 3.43

MTTF = 33270 years
The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate $=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]=3.43$
MTTF $=10^{9} /$ FIT $=33270$ years
$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
$\mathbf{N}=$ Total Number of units from burn-in tests
$\mathbf{H}=$ Duration of burn-in testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions (Ea $=0.7 \mathrm{eV}$ and Tuse $=55^{\circ} \mathrm{C}$)
Acceleration Factor [Af] $=\operatorname{Exp}[\mathrm{Ea} / \mathbf{k}(1 / \mathrm{Tj} u-1 / \mathrm{Tj} \mathrm{s})]$
Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
Tj $\mathbf{u}=$ The use junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
$\mathbf{k}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Alpha \& Omega manufacturer:

Other Similar products are found below :
614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0\#T2 RJK60S5DPK-M0\#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3

