GaAs SPST High Isolation Terminated Switch

$0.5-2.0 \mathrm{GHz}$

Features

- Terminated RF Output
- High Isolation: 42 dB up to 2.0 GHz
- Single Positive Control
- CMOS Compatible Logic
- SOIC-8 Plastic Package

Description

M/A-COM's SW-393 is a GaAs monolithic SPST terminated switch in a low cost SOIC 8-lead plastic package. The SW-393 is ideally suited for use where low power consumption and high isolation are required.

Typical applications include PCS and GSM LO Switching, switch matrices and switched filter banks in systems such as radio and cellular equipment.

The SW-393 is fabricated using a mature 1 -micron gate length GaAs MESFET process. The process features full chip passivation for increased performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
SW-393-PIN	Bulk Packaging
SW-393TR	1000 piece reel
SW-393SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Absolute Maximum Ratings ${ }^{2,3}$

Parameter	Absolute Maximum
Input Power	+34 dBm
Operating Voltage $\left(\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\text {CTL }}\right)$	+8.5 Volts
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. $\mathrm{M} / \mathrm{A}-\mathrm{COM}$ does not recommend sustained operation near these survivability limits.

Functional Schematic

Pin Configuration ${ }^{4}$

Pin No.	Function	Pin No.	Function
1	GND	5	GND
2	RF1	6	CTL
3	GND	7	RF2
4	GND	8	GND

4. Blocking capacitors are required on all RF ports. V_{S} can be applied at RF1 or RF2 using 10K or greater pull-up resistors.

Truth Table ${ }^{5,6,7}$

Control	RF1 - RF2
0	Off
1	On

[^0]GaAs SPST High Isolation Terminated Switch
$0.5-2.0 \mathrm{GHz}$
Electrical Specifications ${ }^{8}$: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	$0.5-2.0 \mathrm{GHz}$	dB	-	1.6	1.8
Isolation	$\begin{aligned} & 0.5-1.0 \mathrm{GHz} \\ & 1.0-2.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 53 \\ & 42 \end{aligned}$	-
VSWR	$\begin{aligned} & 0.5-1.5 \mathrm{GHz} \\ & 0.5-2.0 \mathrm{GHz} \end{aligned}$	Ratio Ratio	—	$\begin{aligned} & 1.5: 1 \\ & 1.7: 1 \end{aligned}$	-
1 dB Compression	$\begin{gathered} \text { Input Power, }+5 \mathrm{~V} \mathrm{Control/Supply} \\ 0.5 \mathrm{GHz} \\ 0.9 \mathrm{GHz} \\ 1.5 \mathrm{GHz} \end{gathered}$	dBm dBm dBm	-	$\begin{aligned} & 25 \\ & 25 \\ & 26 \end{aligned}$	-
Trise, Tfall	10\% to 90% RF, 90% to 10% RF	$\mu \mathrm{s}$	-	2	-
Ton, Toff	50\% Control to 90\% RF, Control to 10\% RF	$\mu \mathrm{s}$	-	2	-
Transients	In-Band	mV	-	26	-
Input IP_{2}	2-Tone, 5 MHz spacing, +10 dBm each $\begin{aligned} & 0.5 \mathrm{GHz} \\ & 0.9 \mathrm{GHz} \end{aligned}$	dBm dBm	-	$\begin{aligned} & 53 \\ & 58 \end{aligned}$	-
Input IP_{3}	2-Tone, 5 MHz spacing, +10 dBm each $\begin{aligned} & 0.5 \mathrm{GHz} \\ & 0.9 \mathrm{GHz} \end{aligned}$	dBm dBm	-	$\begin{aligned} & 39 \\ & 38 \end{aligned}$	-

8. All measurements taken at 900 MHz in a 50Ω system unless otherwise specified. Loss varies at $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.

SOIC-8 ${ }^{\dagger}$

[^1]ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit wW.macomtech.com for additional data sheets and product information.

Typical Performance Curves

Insertion Loss vs. Frequency

Isolation vs. Frequency

VSWR vs. Frequency

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-004100-
11930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1
BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2
MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS2353-2-SM TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000

[^0]: 5. "0" $=0 \pm 0.2$ VDC
 6. " 1 " $=+5 \pm 0.2$ VDC
 7. $\mathrm{Vs}=+5 \pm 0.2 \mathrm{VDC}$
[^1]: ${ }^{\dagger}$ Meets JEDEC moisture sensitivity level 1 requirements.

