

500V, 15A, 0.39Ω Max, t_{rr} ≤190ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{fT} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- · Ultra low Crss for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	15F50K	15F50KF	Unit		
I _D	Continuous Collector Current @ T _C = 25°C	15	6.2			
	Continuous Collector Current @ T _C = 100°C	10	3.9	Α		
I _{DM}	Pulsed Drain Current ¹	45	18.6			
V _{GS}	Gate-Source Voltage ²	±3	V			
E _{AS}	Single Pulse Avalanche Energy ²	305		mJ		
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	7		Α		

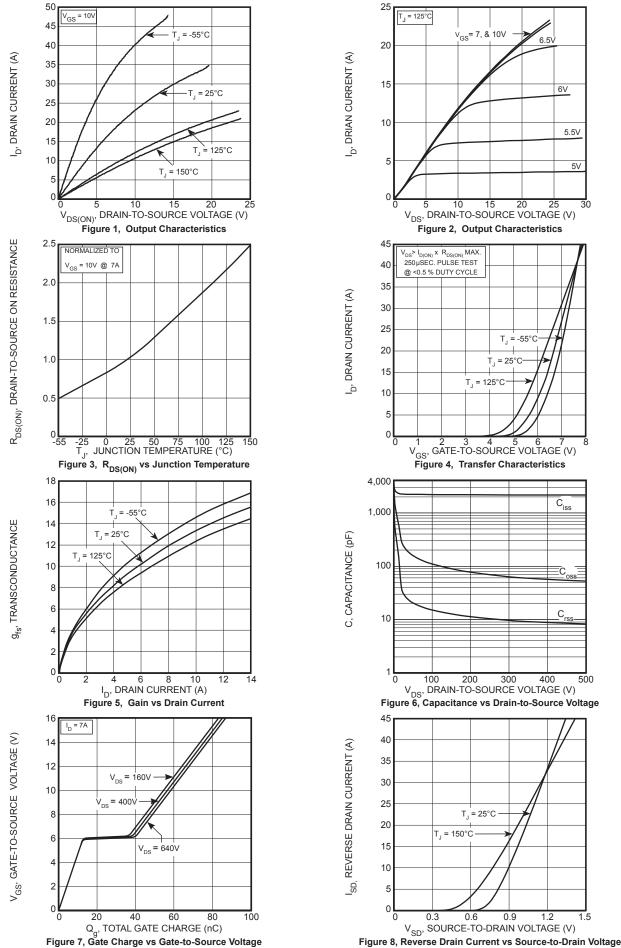
Thermal and Mechanical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
-	Power Dissipation (T _C = 25°C) [K]			223	W
P _D	Power Dissipation (T _C = 25°C) [KF]			37	
$R_{\theta JC}$	Junction to Case Thermal Resistance [K]			0.56	
$R_{\theta JC}$	Junction to Case Thermal Resistance [KF]			3.3	°C/W
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		
T_{J}, T_{STG}	Operating and Storage Junction Temperature Range	-55		150	°C
T_L	Soldering Temperature for 10 Seconds (1.6mm from case)			300 °C	
W _T	Doolsons Weight		0.07		oz
	Package Weight		1.2		g
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in∙lbf
				1.1	N·m

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$		500			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	V _{GS} = 10V, I _D = 7A			0.33	0.39	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.5 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ $T_{J} =$	= 25°C			250	μA
		$V_{GS} = 0V$ $T_{J} =$	= 125°C			1000] μΛ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

Dynamic Characteristics

T₁ = 25°C unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
g _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 7A$		11		S	
C _{iss}	Input Capacitance)/ O)/)/ OF)/		2250			
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		30			
C _{oss}	Output Capacitance	1 111112		240		pF	
C _{o(cr)} ⊕	Effective Output Capacitance, Charge Related	V = 0V V = 0V45 222V		140			
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		70			
Q _g	Total Gate Charge	V 04: 40V 1 74		55			
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 7A,$ $V_{DS} = 250V$		13		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		26			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		10			
t _r	Current Rise Time	V _{DD} = 333V, I _D = 7A		12		ns	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 10\Omega^{\textcircled{6}}, V_{GG} = 15V$		26		115	
t _f	Current Fall Time			8			

Source-Drain Diode Characteristics

Symbol	Parameter		Test Conditions		Min	Тур	Max	Unit
	Continuous Source Current	K	MOSFET symbol showing the	G TAY			15	A
l I _s	(Body Diode)	KF					6.2	
	Pulsed Source Current	K	integral reverse p-n junction diode				45	
I _{SM}	(Body Diode) ^①	ody Diode) [⊕] KF (body diode) Ss	o's			18.6		
V _{SD}	Diode Forward Voltage ^③		I _{SD} = 7A, T _J = 25°			1.0	V	
	Reverse Recovery Time			T _J = 25°C			190	200
t _{rr}				T _J = 125°C			340	ns
	Reverse Recovery Charge		$I_{SD} = 7A^{\textcircled{3}}$ $V_{DD} = 100V$ $di_{SD}/dt = 100A/\mu s$	T _J = 25°C		0.54		
Q _{rr}				T _J = 125°C		1.27		μC
	Reverse Recovery Current			T _J = 25°C		5.9		Α
l rrm				T _J = 125°C		7.9		A
dy/dt	Peak Recovery dv/dt		$I_{SD} \le 7A$, di/dt $\le 1000AV\mu s$, $V_{DD} = 333V$, $T_J = 125^{\circ}C$				20	V/ns
dv/dt] 20	v/ns

- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at T_J = 25°C, L = 12.45mH, R_G = 25 Ω , I_{AS} = 7A.
- 3 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- \bigcirc C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
- (5) $C_{o(er)}^{(o(er))}$ is defined as a fixed capacitance with the same stored energy as $C_{OSS}^{(o(er))}$ with $V_{DS}^{(o(er))} = 67\%$ of $V_{(BR)DSS}^{(o(er))}$. To calculate $C_{o(er)}^{(o(er))}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -5.22E-8/ V_{DS} ^2 + 1.21E-8/ V_{DS} + 3.48E-11.

⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190)

Dimensions in Millimeters and (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3