APTGT225DU170G

Dual common source Trench + Field Stop IGBT3 Power Module

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{CES}}=1700 \mathrm{~V} \\
& \mathbf{I}_{\mathrm{C}}=\mathbf{2 2 5 A} @ \mathbf{T c}=80^{\circ} \mathrm{C}
\end{aligned}
$$

Application

- AC Switches
- Switched Mode Power Supplies
- Uninterruptible Power Supplies

Features

- Trench + Field Stop IGBT3 Technology
- Low voltage drop
- Low tail current
- Switching frequency up to 20 kHz
- Soft recovery parallel diodes
- Low diode VF
- Low leakage current
- RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- Very low stray inductance
- Symmetrical design
- M5 power connectors
- High level of integration

Benefits

- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive TC of VCEsat
- Low profile
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
$\mathrm{V}_{\text {CES }}$	Collector - Emitter Breakdown Voltage		1700	V
I_{C}	Continuous Collector Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	340	A
		$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	225	
$\mathrm{I}_{\text {CM }}$	Pulsed Collector Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	450	
$\mathrm{V}_{\text {GE }}$	Gate - Emitter Voltage		± 20	V
P_{D}	Maximum Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1250	W
RBSOA	Reverse Bias Safe Operating Area	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	450A@1600V	

FAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

APTGT225DU170G

All ratings @ $\mathbf{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise specified
Electrical Characteristics

Symbol	Characteristic	Test Condit		Min	Typ	Max	Unit
$\mathrm{I}_{\text {CES }}$	Zero Gate Voltage Collector Current	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1700 \mathrm{~V}$				500	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	Collector Emitter Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=225 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2.0	2.4	V
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		2.4		
$\mathrm{V}_{\mathrm{GE}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$		5.0	5.8	6.5	V
$\mathrm{I}_{\text {GES }}$	Gate - Emitter Leakage Current	$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$				600	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditi		Min	Typ	Max	Unit
$\mathrm{C}_{\text {ies }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=25 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			20		nF
$\mathrm{C}_{\text {oes }}$	Output Capacitance				0.8		
$\mathrm{C}_{\text {res }}$	Reverse Transfer Capacitance				0.66		
$\mathrm{T}_{\mathrm{d} \text { (on) }}$	Turn-on Delay Time	$\begin{aligned} & \text { Inductive Switching }\left(25^{\circ} \mathrm{C}\right) \\ & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\text {Bus }}=900 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=225 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=3.3 \Omega \\ & \hline \end{aligned}$			370		ns
T_{r}	Rise Time				40		
$\mathrm{T}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time				650		
T_{f}	Fall Time				180		
$\mathrm{T}_{\mathrm{d}(\text { (on) }}$	Turn-on Delay Time	$\begin{aligned} & \hline \text { Inductive Switching }\left(125^{\circ} \mathrm{C}\right) \\ & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Bus}}=900 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=225 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=3.3 \Omega \\ & \hline \end{aligned}$			400		ns
T_{r}	Rise Time				50		
$\mathrm{T}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time				800		
T_{f}	Fall Time				300		
$\mathrm{E}_{\text {on }}$	Turn-on Switching Energy	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\text {Bus }}=900 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=225 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=3.3 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		72		mJ
$\mathrm{E}_{\text {off }}$	Turn-off Switching Energy		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		70.5		

Reverse diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\text {RRM }}$	Maximum Peak Repetitive Reverse Voltage			1700			V
I_{RM}	Maximum Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=1700 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			500	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			750	
I_{F}	DC Forward Current		$\mathrm{Tc}=80^{\circ} \mathrm{C}$		225		A
V_{F}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=225 \mathrm{~A}$	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$		1.8	2.2	V
			$\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$		1.9		
t_{rr}	Reverse Recovery Time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=225 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=900 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=2400 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		385		ns
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		490		
Q_{rr}	Reverse Recovery Charge		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		57		$\mu \mathrm{C}$
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		93		
E_{r}	Reverse Recovery Energy		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		26		mJ
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		52		

APTGT225DU170G

Thermal and package characteristics

SP6 Package outline (dimensions in mm)

See application note APT0601 - Mounting Instructions for SP6 Power Modules on www.microsemi.com

Typical Performance Curve

Reverse Bias Safe Operating Area

APTGT225DU170G

APTGT225DU170G

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with lifesupport or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").
Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
F3L100R07W2E3_B11 F3L15R12W2H3_B27 F3L400R07ME4_B22 F3L400R12PT4_B26 F4-100R12KS4 F4-50R07W2H3_B51 F475R12KS4_B11 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD300R06KE3 FD300R12KE3 FD300R12KS4_B5 FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF100R12KS4 FF1200R17KE3_B2 FF150R12KE3G FF200R06KE3 FF200R06YE3 FF200R12KT3 FF200R12KT3_E FF200R12KT4 FF200R17KE3 FF300R06KE3_B2 FF300R12KE4_E FF300R12KS4HOSA1 FF300R12ME4_B11 FF300R12MS4 FF300R17ME4 FF450R12ME4P FF450R17IE4 FF600R12IE4V FF600R12IP4V FF800R17KP4_B2 FF900R12IE4V MIXA30W1200TED MIXA450PF1200TSF FP06R12W1T4_B3 FP100R07N3E4 FP100R07N3E4_B11 FP10R06W1E3_B11 FP10R12W1T4_B11 FP10R12YT3 FP10R12YT3_B4 FP150R07N3E4 FP15R12KT3 FP15R12W2T4

