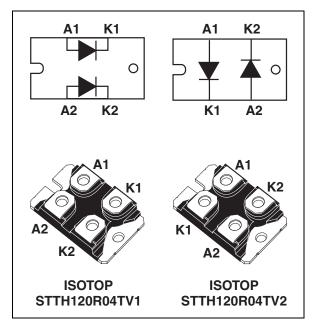


STTH120R04TV

Ultrafast recovery diode

Main product characteristics


I _{F(AV)}	2 x 60 A
V _{RRM}	400 V
Тj	150° C
V _{F (typ)}	0.95 V
t _{rr (typ)}	31 ns

Features and benefits

- Ultrafast
- Very low switching losses
- High frequency and high pulsed current operation
- Low leakage current
- Insulated package:
 - ISOTOP
 Electrical insulation = 2500 V_{RMS}
 Capacitance = 45 pF

Description

The STTH120R04TV series uses ST's new 400 V planar Pt doping technology. The STTH120R04 is specially suited for switching mode base drive and transistor circuits, such as welding equipment.

Order codes

Part Number	Marking
STTH120R04TV1	STTH120R04TV1
STTH120R04TV2	STTH120R04TV2

1 Characteristics

Table 1	Absolute retings (limiting values per diade at 25° C upless athemysics specified)
Table 1.	Absolute ratings (limiting values per diode at 25° C, unless otherwise specified)

Symbol	Parameter				Unit
V _{RRM}	Repetitive peak reverse voltage	Repetitive peak reverse voltage			V
V _{RSM}	Non repetitive peak reverse voltage	Non repetitive peak reverse voltage			V
I _{F(RMS)}	RMS forward current	RMS forward current Per diode			А
	Average forward current, $\delta = 0.5$	Per diode	T _c = 75° C	60	А
^I F(AV)	Average forward current, 0 = 0.5	Per package	$T_c = 70^\circ C$	120	А
I _{FRM}	Repetitive peak forward current $t_p = 5 \ \mu s$, F = 1 kHz square			1800	А
I _{FSM}	Surge non repetitive forward current t _p = 10 ms Sinusoidal			700	А
T _{stg}	Storage temperature range			-65 to + 150	°C
Тj	Maximum operating junction temperature			150	°C

Table 2.Thermal parameters

Symbol	Parameter		Value	Unit
P	Junction to case	Per diode	0.8	
R _{th(j-c)}	Total	0.45	° C/W	
R _{th(c)}	Coupling thermal resistance		0.1	

When the diodes are used simultaneously:

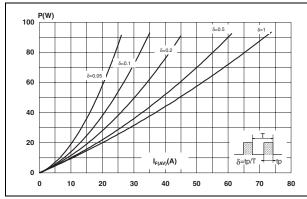
 $\Delta T_{j(diode1)} = P_{(diode1)} \times R_{th(j-c)} \text{ (per diode)} + P_{(diode2)} \times R_{th(c)}$

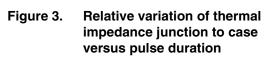
Table 3. Static electrical characteristics

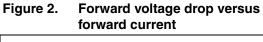
Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _B ⁽¹⁾	Reverse leakage current	T _j = 25° C	V - V			60	
'R` ′	neverse leakage current	T _j = 125° C	V _R = V _{RRM}		60	600	μA
		T _j = 25° C				1.5	
V _F ⁽²⁾	Forward voltage drop	T _j = 100° C	I _F = 60 A		1.05	1.3	V
		T _j = 150° C]		0.95	1.2	

1. Pulse test: $t_p = 5 \text{ ms}, \delta < 2 \%$

2. Pulse test: t_p = 380 µs, δ < 2 %


To evaluate the conduction losses use the following equation: P = 0.9 x $I_{F(AV)}$ + 0.005 x ${I_{F}}^{2}{}_{(RMS)}$




Table 4. Dynam	ic characteristics
----------------	--------------------

Symbol	Parameter	Test conditions	Min.	Тур	Max.	Unit
		$I_F = 1 \text{ A, } dI_F/dt = -50 \text{ A}/\mu \text{s},$ $V_R = 30 \text{ V, } T_j = 25^\circ \text{ C}$			80	
t _{rr}	Reverse recovery time	$I_F = 1 \text{ A}, \text{ d}I_F/\text{d}t = -100 \text{ A}/\mu\text{s},$ $V_R = 30 \text{ V}, \text{ T}_j = 25^\circ \text{ C}$		40	55	ns
	I_F = 1 A, dI_F/dt = -200 A/µs, V_R = 30 V, T_j = 25° C		31	45		
I _{RM}	Reverse recovery current	$ I_F = 60 \text{ A, } dI_F/dt = -200 \text{ A}/\mu\text{s}, \\ V_R = 320 \text{ V, } T_j = 125^\circ \text{ C} $		11	16	А
S	Softness factor	$ I_F = 60 \text{ A, } dI_F/dt = -200 \text{ A}/\mu\text{s}, \\ V_R = 320 \text{ V, } T_j = 125^\circ \text{ C} $		0.4		
t _{fr}	Forward recovery time	$I_F = 60 \text{ A}$ $dI_F/dt = 100 \text{ A}/\mu \text{s}$ $V_{FR} = 1.5 \text{ x} V_{Fmax}, T_j = 25^{\circ} \text{ C}$		600		ns
V _{FP}	Forward recovery voltage	$I_F = 60 \text{ A, } dI_F/dt = 100 \text{ A/}\mu\text{s},$ $T_j = 25^{\circ} \text{ C}$		3.2		V

Figure 1. Conduction losses versus average current

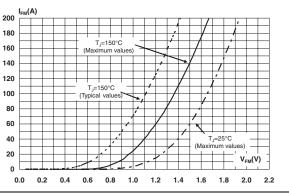
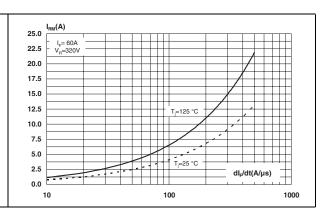



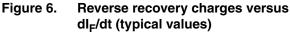
Figure 4. Peak i versus

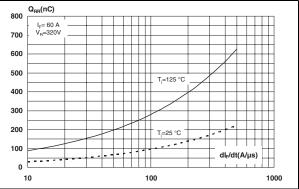
1.E+01

Peak reverse recovery current versus dl_F/dt (typical values)

0.1 1.E-03 1.E-02 1.E-01 1.E+00

Z_{th(j-c)}/R_{th(j-c)}


Single pulse ISOTOP


T

1.0

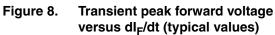


Figure 5. Reverse recovery time versus dI_F/dt (typical values)

Figure 7. Relative variations of dynamic parameters versus junction temperature

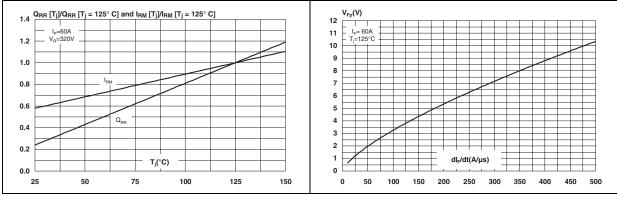
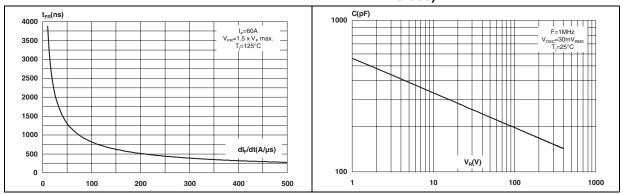
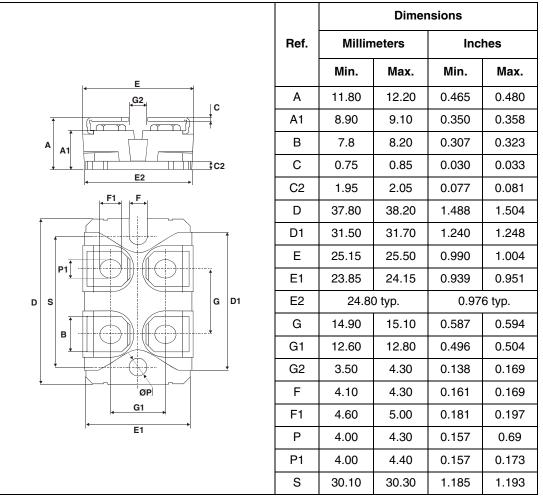



Figure 9. Forward recovery time versus dl_F/dt Figure 10. (typical values)

Junction capacitance versus reverse voltage applied (typical values)



2 Package information

Epoxy meets UL94, V0

Cooling method: by conduction (C)

Table 5. ISOTOP dimensions

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

57

3 Ordering information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
STTH120R04TV1	STTH120R04TV1	ISOTOP	27 g	10	Tube
STTH120R04TV2	STTH120R04TV2	ISOTOP	27 g	10	Tube

4 Revision history

Date	Revision	Description of Changes
31-Mar-2007	1	First issue

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G DSEI2X30-06C 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF