LV5769V

Bi-CMOS IC

1-channel Step-down Switching Regulator

ON Semiconductor ${ }^{\text {® }}$
http:/lonsemi.com

SSOP16(225mil)

Overview

The LV5769V is a 1-channel step-down switching regulator.

Function

- 1 channel step-down switching regulator controller.
- Frequency decrease function at pendent.
- Load-independent soft start circuit.
- ON/OFF function.
- Built-in pulse-by-pulse OCP circuit. It is detected by using ON resistance of an external MOS.
- Synchronous rectification
- Current mode control

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Conditions	Ratings	Unit
Supply voltage		$\mathrm{V}_{\text {IN }}$ max		45	V
	$V_{\text {IN }}$, SW			45	V
	HDRV, CBOOT			52	V
	LDRV			6.0	V
	Between CBOOT to SW Between CBOOT to HDRV			6.0	V
	EN, ILIM			$\mathrm{V}_{1 \mathrm{~N}}+0.3$	V
	Between $\mathrm{V}_{\text {IN }}$ to ILIM			1.0	V
	$V_{\text {DD }}$			6.0	V
	SS, FB, COMP,RT			$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Allowable Power dissipation		Pd max	Mounted on a specified board. *	0.74	W
Operating temperature		Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

* Specified board : $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V_{IN}		8.5 to 42	V
Error amplifier input voltage	V_{FB}		0 to 1.6	V
Oscillatory frequency	F		80 to 500	kHz

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Reference voltage block						
Internal reference voltage	Vref	Including offset of E/A	0.654	0.67	0.686	V
5 V power supply	V_{DD}	IOUT $=0$ to 5 mA	4.7	5.2	5.7	V
Triangular waveform oscillator block						
Oscillation frequency	Fosc	$\mathrm{RT}=220 \mathrm{k} \Omega$	110	125	140	kHz
Frequency variation	Fosc DV	$\mathrm{V}_{\mathrm{IN}}=8.5$ to 32 V		1		\%
Oscillation frequency fold back detection voltage	$V_{\text {OSC }} \mathrm{FB}$	FB voltage detection after SS ends		0.1		V
Oscillation frequency after fold back	FOSC FB			1/3Fosc		kHz
ON/OFF circuit block						
IC start-up voltage	$\mathrm{V}_{\text {EN }}$ on		2.5	3.0	3.5	V
IC off voltage	$V_{\text {EN }}$ off		1.1	1.3	1.5	V
Soft start circuit block						
Soft start source current	ISS SC	$\mathrm{EN}>3.5 \mathrm{~V}$	4	5	6	$\mu \mathrm{A}$
Soft start sink current	ISS SK	$\mathrm{EN}<1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		mA
UVLO circuit block						
UVLO lock release voltage	VUVLO			8		V
UVLO hysteresis	VUVLO H			0.7		V
Error amplifier						
Input bias current	${ }^{\text {I EA IN }}$				100	nA
Error amplifier gain	G_{EA}		1000	1400	1800	$\mu \mathrm{A} / \mathrm{V}$
Sink output current	IEA OSK	$F B=1.0 \mathrm{~V}$		-100		$\mu \mathrm{A}$
Source output current	IEA OSC	$\mathrm{FB}=0 \mathrm{~V}$		100		$\mu \mathrm{A}$
Current detection amplifier gain	GISNS			1.5		
over current limiter circuit block						
Reference current	ILIM		-10\%	18.5	+10\%	$\mu \mathrm{A}$
Over current detection comparator offset voltage	VLIM OFS		-5		+5	mV
Over current detection comparator common mode input range			$\mathrm{V}_{1 \mathrm{~N}}-0.45$		V_{IN}	V
PWM comparator						
Input threshold voltage	Vt max	Duty cycle $=$ DMAX	0.9	1.0	1.1	V
($\mathrm{FOSC}=125 \mathrm{kHz}$)	Vt0	Duty cycle $=0 \%$	0.4	0.5	0.6	V
Maximum ON duty	DMAX		86	90	95	\%
Output block						
Output stage ON resistance (the upper side)	$\mathrm{R}_{\mathrm{ONH}}$			5		Ω
Output stage ON resistance (the under side)	RONL			5		Ω
Output stage ON current (the upper side)	IONH		240			mA
Output stage ON current (the under side)	IONL		240			mA

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
The whole device						
Standby current	ICCS	$\mathrm{EN}<1 \mathrm{~V}$			10	$\mu \mathrm{A}$
Mean consumption current	ICCA	EN $>3.5 \mathrm{~V}$		3		mA
Security function						
Protection function operating temperature at high temperature	TSD on	* Design certification		170		${ }^{\circ} \mathrm{C}$
Protection function hysteresis at high temperature	TSD hys	* Design certification		30		${ }^{\circ} \mathrm{C}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Package Dimensions

unit : mm
SSOP16 (225mil)
CASE 565AM
ISSUE A

NOTE: The measurements are not to guarantee but for reference only.
*For additional information on our Pb-Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC

 MARKING DIAGRAM*

XXXXX = Specific Device Code
$Y=$ Year
$M=$ Month
DDD = Additional Traceability Data
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

Pin Assignment

Block Diagram

Pin Function

Pin No.	Pin name	
1	FB	Error amplifier reverse input pin. By operating the converter, the voltage of this pin becomes 0.67 V . The voltage in which the output voltage is divided by an external resistance is applied to this pin. Moreover, when this pin voltage becomes 0.1 V or less after a soft start ends, the oscillatory frequency becomes $1 / 3$.
2	COMP	Error amplifier output pin. Connect a phase compensation circuit between this pin and GND.
3	EN	ON/OFF pin.
4	RT	Oscillation frequency setting pin. Resistance is connected with this pin between GND.
5,13	N.C.	No connection *2
6	SW	Pin to connect with switching node. Upper part NchMOSFET external a source is connected with lower side NchMOSFET external a drain.
7	CBOOT	Bootstrap capacity connection pin. This pin becomes a GATE drive power supply of an external NchMOSFET. Connect a bypath capacitor between CBOOT and SW.
8	HDRV	An external the upper MOSFET gate drive pin.
9	LDRV	An external the lower MOSFET gate drive pin.
10	VDD	Power supply pin for an external the lower MOS-FET gate drive.
11	GND	Ground pin. Each reference voltage is based on the voltage of the ground pin.
12	SUBGND	It is connected with the GND pin of 11pin internally. *3
14	VIN	Power supply pin. This pin is monitored by UVLO function. When the voltage of this pin becomes 8V or more by UVLO function, The IC starts and the soft start function operates.
15	ILIM	Reference current pin for current detection. The sink current of about $18.5 \mu A$ flows to this pin. When a resistance is connected between this pin and VIN outside and the voltage applied to the SW pin is lower than the voltage of the terminal side of the resistance, the upper NchMOSFET is off by operating the current limiter comparator. This operation is reset with respect to each PWM pulse.
16	SS	Pin to connect a capacitor for soft start. A capacitor for soft start is charged by using the voltage of about $5 \mu A$. This pin ends the soft start period by using the voltage of about 1.1 V and the frequency fold back function becomes active.

*2: There is no problem even if it connects it with GND.
*3: Short-circuited and use 11 pin and 12 pin as GND.

I/O pin equivalent circuit chart
PB No. SS

Continued on next page

LV5769V

Continued from preceding page.
Pin No.

Boot sequence, UVLO, and TSD operation

Sequence of overcurrent protection

Sample Application Circuit

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV5769V-MPB-E	SSOP16 (225mil) (Pb-Free / Halogen Free)	$90 /$ Fan-Fold
LV5769VZ-MPB-E	SSOP16 (225mil) (Pb-Free / Halogen Free)	90 / Fan-Fold
LV5769VZ-TLM-E	SSOP16 (225mil) (Pb-Free / Halogen Free)	2000 / Tape \& Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG NCP81111MNI0TXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G

AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX77596ETBB+T MAX16905AUE/V+ NCP6332CMTAATBG NCV890203MWTXG LX7176A MP2162AGQH-Z MAX17544ATP+T MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642DADJIMC MC34063LBBGEVB MCP1252T-33X50IMS

