LT3494/LT3494A

Micropower Low Noise Boost Converters with Output Disconnect

feATURES

- Low Quiescent Current 65μ A in Active Mode $1 \mu \mathrm{~A}$ in Shutdown Mode
- Switching Frequency is Non-Audible Over Entire Load Range
- Integrated Power NPN:

350mA Current Limit (LT3494A)
180mA Current Limit (LT3494)

- Integrated Schottky Diode
- Integrated Output Disconnect
- Integrated Output Dimming
- Wide Input Range: 2.3 V to 16 V
- Wide Output Range: Up to 40 V
- Tiny 8 -Lead $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN Package

APPLICATIONS

- OLED Power
- Low Noise Power
- MP3 Players

DESCRIPTIOn

The LT ${ }^{\circledR} 3494 / L T 3494 A$ are low noise boost converters with integrated power switch, Schottky diode and output disconnect circuitry. The parts use a novel* control technique resulting in low output voltage ripple as well as high efficiency over a wide load current range. This technique guarantees that the switching frequency stays above the audio band for the entire load range. The parts feature a high performance NPN power switch with a 350 mA and 180 mA current limit for the LT3494A and LT3494 respectively. The quiescent current is a low $65 \mu \mathrm{~A}$, which is further reduced to less than $1 \mu \mathrm{~A}$ in shutdown. The internal disconnect circuitry allows the output voltage to be isolated from the input during shutdown. An auxiliary reference input (CTRL pin) overrides the internal 1.225 V feedback reference with any lower value allowing full control of the output voltage during operation. The LT3494/LT3494A are available in a tiny 8 -lead $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN package.
$\boldsymbol{\mathcal { Y }}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
*Patent pending.

TYPICAL APPLICATION

OLED Power Supply from One Li-Ion Cell

Output Voltage Ripple vs Load Current

Efficiency and Power Loss vs Load Current

absolute maximum ratings

(Note 1)
VCC Voltage ... 16 V
SW Voltage ...40V
CAP Voltage ..40V
VouT Voltage ... 40 V
SHDN Voltage ..16V
CTRL Voltage ...16V
FB Voltage..2.5V
Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range.................. $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=\mathrm{V}_{\mathrm{CC}}$, unless otherwise noted. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage				2.3	2.5	V
Maximum Operating Voltage					16	V
Feedback Voltage	$V_{\text {CTRL }}=3 \mathrm{~V}$ (Note 3)	\bullet	1.205	1.225	1.245	V
FB Resistor		-	179	182	184	k Ω
Quiescent Current	Not Switching			65	75	$\mu \mathrm{A}$
Quiescent Current in Shutdown	$V_{\text {SHDN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=3 \mathrm{~V}$			0	1	$\mu \mathrm{A}$
Minimum Switch Off Time	After Start-Up Mode, $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=3 \mathrm{~V}$ (Note 4) During Start-Up Mode, $\mathrm{V}_{\text {FB }}=0.2 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=3 \mathrm{~V}$ (Note 4)			$\begin{aligned} & 100 \\ & 450 \end{aligned}$		ns ns
Maximum Switch Off Time	$V_{\text {FB }}=1.5 \mathrm{~V}$	\bullet	15	20	30	$\mu \mathrm{S}$
Switch Current Limit	LT3494A (Note 5) LT3494 (Note 5)		$\begin{aligned} & 225 \\ & 115 \end{aligned}$	$\begin{aligned} & 350 \\ & 180 \end{aligned}$	$\begin{aligned} & 450 \\ & 250 \end{aligned}$	mA mA
Switch V ${ }_{\text {CESAT }}$	$\begin{aligned} & \text { LT3494A, } I_{S W}=200 \mathrm{~mA} \\ & \text { LT3494, } I_{S W}=100 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 180 \\ & 110 \end{aligned}$		mV mV
Switch Leakage Current	$V_{S W}=5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0$			0.01	1	$\mu \mathrm{A}$
Schottky Forward Voltage	$\mathrm{I}_{\text {IIODE }}=100 \mathrm{~mA}$			900	1100	mV
Schottky Reverse Leakage				0.05	1	$\mu \mathrm{A}$
PMOS Disconnect $\mathrm{V}_{\text {CAP }}-\mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CAP }}=5 \mathrm{~V}$			250		mV
$\overline{\overline{S H D N}}$ Input Voltage High			1.5			V
SHDN Input Voltage Low					0.3	V
$\overline{\text { SHDN }}$ Pin Bias Current	$\begin{aligned} & V \overline{S H D N}=3 \mathrm{~V} \\ & V \overline{\text { SHDN }}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 0.1 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The • denotes the speciifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{SHDN}}}=\mathrm{V}_{\mathrm{CC}}$, unless otherwise noted. (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS				
CTRL Pin Bias Current	$V_{\text {CTRL }}=0.5 \mathrm{~V}$, Current Flows Out of Pin	\bullet	20	100
Maximum Shunt Current	$V_{\text {CTRL }}=0.5 \mathrm{~V}$	8	15	nV

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LT3494/LT3494A are guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: Internal reference voltage is determined by finding V_{FB} voltage level which causes quiescent current to increase $20 \mu \mathrm{~A}$ above "Not Switching" level.
Note 4: If CTRL is overriding the internal reference, Start-Up mode occurs when $V_{F B}$ is less then half the voltage on CTRL. If CTRL is not overriding the internal reference, Start-Up mode occurs when $V_{F B}$ is less then half the voltage of the internal reference.
Note 5: Current limit guaranteed by design and/or correlation to static test.

TYPICAL PGRFORMANCE CHARACTERISTICS
 $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

3494 G01

3494 G02

LT3494/LT3494A

TYPICAL PGRFORMANCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$ unless ditemise noted.

3494 G04

3494 G 07

LT3494 Switching Waveforms at

 No Load

Minimum Switching Frequency

3494 G05
Peak Inductor Current (LT3494)

3494 G08
LT3494 Switching Waveforms at 1mA Load

Quiescent Current-Not Switching

3494 G06
Peak Inductor Current (LT3494A)

LT3494 Switching Waveforms at 25 mA Load

TYPICAL PGRFORMANCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$ unless ditemise noted.

LT3494A Switching Waveforms at 5mA Load

LT3494 Transient Response

LT3494A Switching Waveforms at 30mA Load

LT3494A Transient Response

LT3494/LT3494A

PIn fUnCTIOnS

SW (Pin 1): Switch Pin. This is the collector of the internal NPN power switch. Minimize the metal trace area connected to this pin to minimize EMI.

GND (Pin 2): Ground. Tie directly to local ground plane.
$V_{\text {CC }}$ (Pin 3): Input Supply Pin. Must be locally bypassed.
CTRL (Pin 4): Dimming Pin. If not used, tie CTRL to 1.5 V or higher. If in use, drive CTRL below 1.225 V to override the internal reference. See Applications Information for more information.
$\overline{\text { SHDN }}$ (Pin 5): Shutdown Pin. Tie to 1.5 V or more to enable device. Ground to shut down.

FB (Pin 6): Feedback Pin. Reference voltage is 1.225 V . There is an internal 182k resistor from the FB pin to GND. To achieve the desired output voltage, choose R1 according to the following formula:

$$
\mathrm{R} 1=182 \cdot\left(\frac{\mathrm{~V}_{\text {OUT(MAX) }}}{1.225}-1\right) \mathrm{k} \Omega
$$

$V_{\text {OUT }}$ (Pin 7): Drain of Output Disconnect PMOS. Place a bypass capacitor from this pin to GND. See Applications Information.

CAP (Pin 8): This is the cathode of the internal Schottky diode. Place a bypass capacitor from this pin to GND.
Exposed Pad (Pin 9): Ground. This pin must be soldered to PCB.

BLOCK DIAGRAM

OPERATION

The LT3494/LT3494A use a novel control scheme to provide high efficiency over a wide range of output current. In addition, this technique keeps the switching frequency above the audio band over all load conditions.

The operation of the part can be better understood by refering to the Block Diagram. The part senses the output voltage by monitoring the voltage on the FB pin. The user sets the desired output voltage by choosing the value of the external top feedback resistor. The parts incorporate a precision 182 k bottom feedback resistor. Assuming that output voltage adjustment is not used (CTRL pin is tied to 1.5 V or greater), the internal reference ($\mathrm{V}_{\text {REF }}=1.225 \mathrm{~V}$) sets the voltage at which FB will servo to during regulation.
The Switch Control block senses the output of the amplifier and adjusts the switching frequency as well as other parameters to achieve regulation. During the start-up of the circuit, special precautions are taken to insure that the inductor current remains under control.

Because the switching frequency is never allowed to fall below approximately 50 kHz , a minimum load must be present to preventthe output voltage from drifting too high. This minimum load is automatically generated within the part via the Shunt Control block. The level of this current is adaptable, removing itself when not needed to improve efficiency at higher load levels.

The LT3494/LT3494A also have an integrated Schottky diode and PMOS output disconnect switch. The PMOS switch is turned on when the part is enabled via the SHDN pin. When the parts are in shutdown, the PMOS switch turns off, allowing the $\mathrm{V}_{\text {OUT }}$ node to go to ground. This type of disconnect function is often required in power supplies.
The only difference between the LT3494A and LT3494 is the level of the current limit. The LT3494A has a typical peak current limit of 350 mA while the LT3494 has a 180 mA limit.

APPLICATIONS INFORMATION

Choosing an Inductor

Several recommended inductors that work well with the LT3494/LT3494A are listed in Table 1, although there are many other manufacturers and devices that can be used. Consult each manufacturer for more detailed information and for their entire selection of related parts. Many different sizes and shapes are available. Use the equations and recommendations in the next few sections to find the correct inductance value for your design.

Inductor Selection-Boost Regulator

The formula below calculates the appropriate inductor value to be used for a boost regulator using the LT3494/ LT3494A (or at least provides a good starting point).

This value provides a good trade off in inductor size and system performance. Pick a standard inductor close to this value. A larger value can be used to slightly increase the available output current, but limit it to around twice the value calculated below, as too large of an inductance will decrease the output voltage ripple without providing much additional output current. A smaller value can be used (especially for systems with output voltages greater than 12V) to give a smaller physical size. Inductance can be calculated as:

$$
\mathrm{L}=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }(\mathrm{MIN})}+0.5 \mathrm{~V}\right) \cdot 0.66(\mu \mathrm{H})
$$

where $\mathrm{V}_{\text {OUT }}$ is the desired output voltage and $\mathrm{V}_{\text {IN(MIN) }}$ is the minimum input voltage. Generally, a $10 \mu \mathrm{H}$ or $15 \mu \mathrm{H}$ inductor is a good choice.

Table 1. Recommended Inductors

PART	FOR USE WITH	VALUE $(\boldsymbol{\mu} \mathbf{H})$	MAX DCR (Ω)	MAX DC I $(\mathbf{m A})$	SIZE $(\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m})$	VENDOR
LQH32CN100K53	LT3494/LT3494A	10	0.3	450	$3.5 \times 2.7 \times 1.7$	Murata
LQH32CN150K53	LT3494	15	0.58	300	$3.5 \times 2.7 \times 1.7$	www.murata.com
CDRH3D11-100	LT3494	10	0.24	280	$4.0 \times 4.0 \times 1.2$	Sumida
CDHED13/S-150	LT3494/LT3494A	15	0.55	550	$4.0 \times 4.2 \times 1.4$	www.sumida.com

APPLICATIONS InFORMATION

Capacitor Selection

The small size and low ESR of ceramic capacitors makes them suitable for most LT3494/LT3494A applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y 5 V or $\mathrm{Z5U}$. A $4.7 \mu \mathrm{Finput}$ capacitor and a $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ output capacitor are sufficient for mostLT3494/LT3494A applications. Always use a capacitor with a sufficient voltage rating. Many capacitors rated at $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$, particularly 0805 or 0603 case sizes, have greatly reduced capacitance when bias voltages are applied. Be sure to check actual capacitance at the desired output voltage. Generally a 1206 size capacitor will be adequate. $\mathrm{A} 0.22 \mu \mathrm{~F}$ or $0.47 \mu \mathrm{~F}$ capacitor placed on the CAP node is recommended to filter the inductor current while the larger $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ placed on the $\mathrm{V}_{\text {OUt }}$ node will give excellent transient response and stability. Table 2 shows a list of several capacitor manufacturers. Consult the manufacturers for more detailed information and for their entire selection of related parts.

Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	PHONE	URL
Taiyo Yuden	$408-573-4150$	www.t-yuden.com
AVX	$843-448-9411$	www.avxcorp.com
Murata	$814-237-1431$	www.murata.com
Kemet	$408-986-0424$	www.kemet.com

Setting Output Voltage and the Auxiliary Reference Input

The LT3494/LT3494A are equipped with both an internal 1.225 V reference and an auxiliary reference input. This allows the user to select between using the built-in reference and supplying an external reference voltage. The voltage at the CTRL pin can be adjusted while the chip is operating to alter the output voltage of the LT3494/LT3494A for purposes such as display dimming or contrast adjustment. To use the internal 1.225 V reference, the CTRL pin must be held higher than 1.5 V . When the CTRL pin is held between 0 V and 1.5 V , the LT3494 will regulate the output such that the FB pin voltage is nearly equal to the CTRL pin voltage. At CTRL voltages close to 1.225 V , a soft transition occurs between the CTRL pin and the internal reference. Figure 1 shows this behavior.

3494501
Figure 1. CTRL to FB Transfer Curve
To set the maximum output voltage, select the values of R1 according to the following equation:

$$
\mathrm{R} 1=182 \cdot\left(\frac{\mathrm{~V}_{\text {OUT(MAX) }}}{1.225}-1\right) \mathrm{k} \Omega
$$

When CTRL is used to override the internal reference, the output voltage can be lowered from the maximum value down to nearly the input voltage level. If the voltage source driving the CTRL pin is located at a distance to the LT3494/LT3494A, a small $0.1 \mu \mathrm{~F}$ capacitor may be needed to bypass the pin locally.

Choosing a Feedback Node

The single feedback resistor may be connected to the $\mathrm{V}_{\text {OUT }}$ pin or to the CAP pin (see Figure 2). Regulating the $\mathrm{V}_{\text {Out }}$ pin eliminates the output offset resulting from the voltage drop across the output disconnect PMOS. Regulating the CAP pin does not compensate for the voltage drop across the output disconnect, resulting in an output voltage $\mathrm{V}_{\text {OUT }}$ that is slightly lower than the voltage set by the resistor divider. Under most conditions, it is advised that the feedback resistor be tied to the $\mathrm{V}_{\text {OUT }}$ pin.

Figure 2. Feedback Connection Using the CAP Pin or the $\mathrm{V}_{\text {OUT }}$ Pin

APPLICATIONS INFORMATION

Connecting the Load to the CAP Node

The efficiency of the converter can be improved by connecting the load to the CAP pin instead of the $\mathrm{V}_{\text {Out }}$ pin. The power loss in the PMOS disconnect circuit is then made negligible. By connecting the feedback resistor to the $V_{\text {OUT }}$ pin, no quiescent current will be consumed in the feedback resistor string during shutdown since the PMOS transistor will be open (see Figure 3). The disadvantage of this method is that the CAP node cannot go to ground during shutdown, but will be limited to around a diode drop below $\mathrm{V}_{\text {cc }}$. Loads connected to the part should only sink current. Never force external power supplies onto the CAP or $\mathrm{V}_{\text {OUT }}$ pins. The larger value output capacitor $(2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F})$ should be placed on the node to which the load is connected.

Figure 3. Improved Efficiency

Maximum Output Load Current

The maximum output current of a particular LT3494/ LT3494A circuit is a function of several circuit variables. The following method can be helpful in predicting the maximum load current for a given circuit:

Step 1: Calculate the peak inductor current:

$$
I_{\text {PK }}=I_{\text {LIMIT }}+\frac{V_{I N} \cdot 400 \cdot 10^{-9}}{L} \text { amps }
$$

where $l_{\text {LIMIT }}$ is 0.180 A and 0.350 A for the LT3494 and LT3494A respectively. L is the inductance value in Henrys and $\mathrm{V}_{\text {IN }}$ is the input voltage to the boost circuit.

Step 2: Calculate the inductor ripple current:

$$
I_{\text {RIPPLE }}=\frac{\left(V_{\text {OUT }}+1-V_{\text {IN }}\right) \cdot 150 \cdot 10^{-9}}{L} \mathrm{amps}
$$

where $\mathrm{V}_{\text {OUT }}$ is the desired output voltage.

If the inductor ripple current is greater than the peak current, then the circuit will only operate in discontinuous conduction mode. The inductor value should be increased so that $I_{\text {RIPPLE }}<l_{\text {PK }}$. An application circuit can be designed to operate only in discontinuous mode, but the output current capability will be reduced.

Step 3: Calculate the average input current:

$$
I_{I N(A V G)}=I_{\text {PK }}-\frac{I_{\text {RIPPLE }}}{2} \mathrm{amps}
$$

Step 4: Calculate the nominal output current:

$$
\mathrm{I}_{\mathrm{OUT}(\mathrm{NOM})}=\frac{\mathrm{I}_{\mathrm{IN}(\mathrm{AVG})} \bullet \mathrm{V}_{\text {IN }} \bullet 0.75}{\mathrm{~V}_{\text {OUT }}} \mathrm{amps}
$$

Step 5: Derate output current:

$$
\mathrm{I}_{\text {OUT }}=\mathrm{I}_{\text {OUT(NOM) }} \bullet 0.7 \mathrm{amps}
$$

For low output voltages the output current capability will be increased. When using output disconnect (load current taken from $\mathrm{V}_{\text {OUT }}$), these higher currents will cause the drop in the PMOS switch to be higher resulting in reduced output current capability than those predicted by the preceding equations.

Inrush Current

When $V_{C C}$ is stepped from ground to the operating voltage while the output capacitor is discharged, a higher level of inrush current may flow through the inductor and integrated Schottky diode into the output capacitor. Conditions that increase inrush current include a larger more abrupt voltage step at $\mathrm{V}_{\mathbf{I N}}$, a larger output capacitor tied to the CAP pin and an inductor with a low saturation current. While the internal diode is designed to handle such events, the inrush current should not be allowed to exceed 1A. For circuits that use output capacitor values within the recommended range and have input voltages of less than 5 V , inrush current remains low, posing no hazard to the device. In cases where there are large steps at $\mathrm{V}_{\text {CC }}$ (more than 5 V) and/or a large capacitor is used at the CAP pin, inrush current should be measured to ensure safe operation. The LT3494A circuits experience higher levels of current during start-up and steady-state operation. An external diode placed from the SW pin to

LT3494/LT3494A

APPLICATIONS INFORMATION

the CAP pin will improve efficiency and lower the stress placed on the internal Schottky diode.

Board Layout Considerations

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximize efficiency, switch rise and fall times are made as short as possible. To prevent electromagnetic interference (EMI) problems, proper layout of the high frequency switching path is essential. The voltage signal of the SW pin has sharp rising and falling edges. Minimize the length and area of all traces connected to the SW pin and always use a ground plane under the switching regulator to minimize interplane coupling. In addition, the FB connection for the feedback resistor R1 should be tied directly from the Vout pin to the FB pin and be kept as short as possible, ensuring a clean, noise-free connection. Recommended component placement is shown in Figure 4.

\otimes VIAS TO GROUND PLANE REQUIRED TO IMPROVE THERMAL PERFORMANCE

Figure 4. Recommended Layout

TYPICAL APPLICATIONS

Figure 5. One Li-Ion Cell Input Boost Converter with the LT3494

$\mathbf{V}_{\text {OUT }}$	R1 VALUE REQUIRED $(\mathbf{M} \Omega)$	MAXIMUM OUTPUT CURRENT AT 3V INPUT (mA)
25	3.57	8.6
24	3.40	9.3
23	3.24	10.0
22	3.09	10.6
21	2.94	11.3
20	2.80	12.1
19	2.67	12.9
18	2.49	13.6
17	2.37	14.8
16	2.21	16.0
15	2.05	17.2

PACKAGE DESCRIPTION

DDB Package

8-Lead Plastic DFN ($3 \mathrm{~mm} \times 2 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1702 Rev B)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE MO-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights

LT3494/LT3494A

TYPICAL APPLICATION

C1, C2: X5R OR X7R WITH SUFFICIENT VOLTAGE RATING
C3: TAIYO YUDEN TMK316BJ106ML
D1: CENTRAL SEMICONDUCTOR CMDSH-3
L1: MURATA LQH32CN100K53
Figure 6. One Li-Ion Cell Input Boost Converter with the LT3494A

Output Voltage Ripple vs Load Current

Efficiency and Power Loss vs Load Current

3494 F06b

$\mathbf{V}_{\mathbf{0 U T}}$	R1 VALUE REQUIRED $(\mathbf{M} \Omega)$	MAXIMUM OUTPUT CURRENT AT 3V INPUT (mA)
25	3.57	13.0
24	3.40	14.0
23	3.24	15.0
22	3.09	16.5
21	2.94	17.5
20	2.80	19.0
19	2.67	20.0
18	2.49	21.5
17	2.37	23.0
16	2.21	25.0
15	2.05	27.0

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1613	550 mA (Isw), 1.4MHz, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN }}: 0.9 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A} \text {, }$ ThinSOT Package
LT1615/LT1615-1	$300 \mathrm{~mA} / 80 \mathrm{~mA}$ (Isw), High Efficiency Step-Up DC/DC Converters	$\mathrm{V}_{\text {IN: }}: 1 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package
LT1930/LT1930A	1 A (Isw), 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC Converters	$\mathrm{V}_{\text {IN: }}: 2.6 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=4.2 \mathrm{~A} / 5.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package
LT1945 (Dual)	Dual Output, Boost/Inverter, 350 mA (Isw), Constant Off-Time, High Efficiency Step-Up DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 1.2 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, 10-Lead MS Package
LT1946/LT1946A	1.5 A (Isw), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converters	$\mathrm{V}_{\text {IN: }}$ 2.45V to 16V, $\mathrm{V}_{\text {OUT(MAX }}=34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=3.2 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, 8-Lead MS Package
LT3467/LT3467A	1.1A (Isw), 1.3MHz/2.1MHz, High Efficiency Step-Up DC/DC Converters with Soft-Start	$\mathrm{V}_{\text {IN }}: 2.4 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOT Package
LT3463/LT3463A	Dual Output, Boost/Inverter, 250mA (ISW), Constant Off-Time, High Efficiency Step-Up DC/DC Converters with Integrated Schottkys	$\mathrm{V}_{\mathrm{IIN}}: 2.3 \mathrm{~V} \text { to } 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A},$ DFN Package
LT3471	Dual Output, Boost/Inverter, 1.3A (I Isw), High Efficiency Boost-Inverting DC/DC Converter	$\mathrm{V}_{\text {IN: }} 2.4 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, DFN Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Linear Technology manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

