Low Leakage Schottky Barrier Rectifier

Main product characteristics

I_{O}	1 A
$\mathrm{~V}_{\mathrm{RRM}}$	20 V
$\mathrm{~T}_{\mathrm{j}(\mathrm{MAX})}$	$125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{F}(\operatorname{MAX})}$	0.455 V
$\mathrm{I}_{\mathrm{R}(\text { MAX })}$	$10 \mu \mathrm{~A}$

Features and benefits

- Low forward voltage drop
- Low profile package height
- Efficient heat path with integral locking bottom metal tab
- Low thermal resistance DO-216AA package

Description and applications

Single schottky rectifier assembled in Powermite 1^{\circledR} package which features a full metallic bottom that eliminates possibility of solder flux entrapment during assembly. The package also incorporates a unique locking tab which acts as an efficient heat path from die to mounting plane for external heat sinking with very low thermal resistance junction to case (bottom).

This product is suitable for use in switching and regulating power supplies and also charge pump circuits.

Absolute maximum ratings ${ }^{(1)}$

Symbol	Parameter	Value	Unit
$\begin{gathered} \mathrm{V}_{\mathrm{RRM}} \\ \mathrm{~V}_{\mathrm{RWM}} \\ \mathrm{~V}_{\mathrm{R}} \end{gathered}$	Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	20	V
$\mathrm{V}_{\mathrm{R} \text { (RMS) }}$	RMS Reverse Voltage	14	V
Io	Average rectified forward output current $\left(T_{C}=135^{\circ} \mathrm{C}\right)$	1.0	A
$\mathrm{I}_{\text {FRM }}$	Peak repetitive forward current (100 kHz square wave, $\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$)	2.0	A
$\mathrm{I}_{\text {FSM }}$	Non repetitive peak forward surge current (8.3 ms single half sine wave)	50	A
$\mathrm{dV} / \mathrm{dt}$	Voltage rate of change (at max V_{R})	10000	$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature	-55 to +125	${ }^{\circ} \mathrm{C}$

[^0]
Low Leakage Schottky Barrier Rectifier

Characteristics

Static Electrical Characteristics

Symbol	Parameter	Test Conditions		Typ	max	Units
$\mathrm{V}_{\mathrm{F}}{ }^{(2)}$	Maximum forward voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~A}$		0.455	V
			$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}$		0.530	
			$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~A}$		0.595	
		$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~A}$		0.360	
			$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}$		0.455	
			$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~A}$		0.540	
$\mathrm{I}_{\mathrm{R}}{ }^{(2)}$	Maximum instantaneous reverse current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$		10	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$		1.0	
			$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$		0.5	
		$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$		1600	
			$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$		500	
			$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$		300	
$\mathrm{C}_{\text {T }}$	Junction capacitance	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$				pF

${ }^{(2)}$ Measured with a test pulse of 380μ s to minimize self-heating effect

Thermal Characteristics

Symbol	Parameter	Value	Unit
$R_{\text {®JC }}$	Junction to case (bottom)	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {®JA }}$	Junction to ambient ${ }^{(3)}$	240	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{(3)}$ Mounted on FR-4 PC board using $10 z$ copper with recommended minimum foot print

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_{j} therefore must include forward and reverse power effects. The allowable operating T_{\jmath} may be calculated from the equation:
$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{J} \text { max }}=\mathrm{r}(\mathrm{t})(\mathrm{Pf}+\mathrm{Pr})$ where
$r(t)=$ thermal impedance under given conditions.
$\mathrm{Pf}=$ forward power dissipation, and
$\mathrm{Pr}=$ reverse power dissipation
This graph displays the de-rated allowable T_{J} due to reverse bias under DC conditions only and is calculated as $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{Jmax}}-\mathrm{r}(\mathrm{t}) \mathrm{Pr}$, Where $r(t)=$ Rthja. For other power applications further calculations must be performed.

Low Leakage Schottky Barrier Rectifier

Thermal Impedance Junction to Ambient

Mechanical Characteristics

Physical dimensions

Low Leakage Schottky Barrier Rectifier

Footprint dimensions

Powermite 1^{\circledR} footprint dimensions in $m m$ (inches)

Package materials \& information

Case : Epoxy meets UL94V-0
Electrode finish : Matte Sn plating - fully RoHS compliant

Marking code :

20E

Ordering information

Product order code	Marking	Package	Weight	Base qty	Delivery mode
UPS120Ee3 / TR7	20 E	Powermite 1 (DO-216AA)	0.016 g	3000	Tape and reel (7 inch)
UPS120Ee3 / TR13	20 E	Powermite 1 (DO-216AA)	0.016 g	12000	Tape and reel (13 inch)

Commercial Business Unit

Microsemi Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Schottky Diodes \& Rectifiers category:
Click to view products by Microsemi manufacturer:

Other Similar products are found below :
CUS06(TE85L,Q,M) MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR30H100MFST1G MMBD301M3T5G PMAD1103LF PMAD1108-LF RB160M-50TR RB520S-30 RB551V-30 DD350N18K DZ435N40K DZ600N16K BAS16E6433HTMA1 BAS 3010S02LRH E6327 BAT 54-02LRH E6327 IDL02G65C5XUMA1 NSR05F40QNXT5G NSVR05F40NXT5G JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SBAT54CWT1G SBM30-03-TR-E SBS818-TL-E SK32A-LTP SK33A-TP SK34A-TP SK34B-TP SMD1200PL-TP ACDBN160-HF SS3003CH-TL-E STPS30S45CW PDS3100Q-7 GA01SHT18 CRS10I30A(TE85L,QM MBR1240MFST1G MBRB30H30CT-1G BAS28E6433HTMA1 BAS 70-02L E6327 HSB123JTR-E JANTX1N5712-1 VS-STPS40L45CW-N3 DD350N12K $\underline{\text { SB007-03C-TB-E SB10015M-TL-E SB1003M3-TL-E SK110-LTP }}$

[^0]: ${ }^{(1)}$ All ratings at $25^{\circ} \mathrm{C}$ unless specified otherwise

