1.8 V to $11 \mathrm{~V}, 15 \mu \mathrm{~A}, 25 \mathrm{kHz}$ GBW, Rail-to-Rail Input and Output Operational Amplifier

General Description

The MIC7111 is a low-power operational amplifier with rail-to-rail inputs and outputs. The device operates from a 1.8 V to 11 V single supply or an $\pm 0.9 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply. The device consumes a low $15 \mu \mathrm{~A}$ of current from a 1.8 V supply and $25 \mu \mathrm{~A}$ from a 10 V supply. The device features a unity gain bandwidth of 25 kHz and swings within 1 mV of either the supply rail with a $100 \mathrm{k} \Omega$ load. The device is capable of sinking and sourcing 25 mA of current from a 1.8 V supply and up to 200 mA from a 10 V supply. The device is available in the cost effective SOT23-5 package.

Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.

Features

- 1.8 V to 11 V single supply operation
- $\pm 0.9 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply operation
- Low $15 \mu \mathrm{~A}$ supply current at 1.8 V
- 25 kHz gain bandwidth
- 1 mV input offset voltage (typical)
- 1pA input bias current (typical)
- 0.01pA input offset current (typical)
- Input-referred noise is $110 \mathrm{nv} / \sqrt{ } \mathrm{Hz}$ at 1 kHz
- Output swing to within 1 mV of rails with 1.8 V supply and 100k load
- Suitable for driving capacitive loads
- Cost effective SOT23-5 package

Applications

- Wireless and cellular communications
- GaAs RF bias amplifier
- Current sensing for battery chargers
- Transducer linearization and interface
- Portable computing

Functional Configuration

SOT-23-5 (M5)

Ordering Information

Part Number	Junction Temperature Range	Package ${ }^{(1)}$
Pb-Free	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT23-5
MIC7111YM5	Snn	

Note:

1. Other packages are available. Contact Micrel for details.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1	OUT	Amplifier Output.
2	V+	Positive Supply
3	IN +	Non-inverting Input.
4	IN-	Inverting Input
5	V-	Negative Supply.

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}_{-}}\right)$ $+12 \mathrm{~V}$
Differential Input Voltage ($\mathrm{V}_{\mathrm{IN}_{+}}-\mathrm{V}_{\mathrm{IN}}$).

\qquad

$$
. . \pm\left(V_{V_{+}}-V_{V_{-}}\right)
$$

$$
\mathrm{I} / \mathrm{O} \text { Pin Voltage }\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{~V}_{\text {OUT }}\right)^{(3)} \ldots \mathrm{V}_{\mathrm{V}+}+0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{V}-}-0.3 \mathrm{~V}
$$Junction Temperature (T_{J})

$\qquad$$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s). $260^{\circ} \mathrm{C}$
Storage Temperature (Ts). $-65^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
ESD Rating ${ }^{(6)}$ 2kV

Operating Ratings ${ }^{(2)}$

Supply Voltage ($\mathrm{V}_{\mathrm{V}+}-\mathrm{V}_{\mathrm{V}-}$) +1.8 V to +11 V
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) . ~ 40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}(\text { MAX })}\right)^{(4)} \ldots+85^{\circ} \mathrm{C}$ Package Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)^{(5)}$................... $+252^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation.....................................Note 4

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{V}_{+}}=+1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{V}-}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
$V_{\text {OS }}$	Input Offset Voltage			0.9	7	7

Notes:

1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings.
2. The device is not guaranteed to function outside its operating ratings.
3. I/O pin voltage is any external voltage to which an input or output is referenced.
4. The maximum allowable power dissipation is a function of the maximum junction temperature, $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$; the junction-to-ambient thermal resistance, θ_{JA}; and the ambient temperature, T_{A}. The maximum allowable power dissipation at any ambient temperature is calculated using $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}-\mathrm{TA}\right)$ $\div \theta_{\mathrm{JA}}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature.
5. Thermal resistance, θ_{JA}, applies to a part soldered on a printed-circuit board.
6. Devices are ESD protected, however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis. Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

DC Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{V}_{+}}=+1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{V}^{-}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
$\mathrm{I}_{\text {Sc }}$	Output Short-Circuit Current ${ }^{(7)}$	Sourcing, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	15	25		mA
		Sinking, $\mathrm{V}_{\text {OUt }}=1.8 \mathrm{~V}$	15	25		
Avol	Voltage Gain	Sourcing		400		V/mV
		Sinking		400		
Is	Supply Current	$\mathrm{V}_{\mathrm{V}_{+}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}_{+} / 2}$		15	35	$\mu \mathrm{A}$

AC Electrical Characteristics

$\mathrm{V}+=+1.8 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
SR	Slew Rate	Voltage follower, 1 V step, $R_{L}=100 \mathrm{k}$ $@ 0.9 \mathrm{~V}, \mathrm{~V}_{\text {out }}=1 V_{\text {P-P }}$		0.015		$\mathrm{~V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product	Sourcing		25		kHz

DC Electrical Characteristics (2.7V)

$\mathrm{V}_{\mathrm{V}_{+}}=+2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{V}-}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
Vos	Input Offset Voltage			0.9	7	mV
					9	
TCV ${ }_{\text {os }}$	Input Offset Voltage Temperature Drift			2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			1	10	pA
					500	
los	Input Offset Current			0.01	0.5	pA
					75	
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10		T Ω
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V}+} \leq 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}-}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=1.35 \mathrm{~V} \end{aligned}$	60	90		dB
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V}^{-}} \leq-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}^{+}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=-1.35 \mathrm{~V} \end{aligned}$	60	90		dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-0.2 \mathrm{~V}$ to +2.9 V	52	75		dB
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3		pF

Note:

7. Short circuit may cause the device to exceed maximum allowable power dissipation (see Note 3).

DC Electrical Characteristics (2.7V) (Continued)

$\mathrm{V}_{\mathrm{V}_{+}}=+2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{V}^{-}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUt }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
Vout	Output Voltage Swing	Output HIGH, R ${ }_{\text {L }}=100 \mathrm{k}$,		0.2	1	mV
		Specified as $\mathrm{V}^{+}+\mathrm{V}_{\text {OUT }}$			1	
		Output LOW, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$		0.2	1	
					1	
		Output HIGH, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$, Specified as $\mathrm{V}_{\mathrm{V}+}-\mathrm{V}_{\text {out }}$		10	33	
					50	
		Output LOW, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		10	33	
					50	
Isc	Output Short-Circuit Current ${ }^{(7)}$	Sourcing, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	30	50		mA
		Sinking, $\mathrm{V}_{\text {Out }}=2.7 \mathrm{~V}$	30	50		
Avol	Voltage Gain	Sourcing		400		V/mV
		Sinking		400		
Is	Supply Current	$\mathrm{V}_{\mathrm{V}+}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2$		17	42	$\mu \mathrm{A}$

AC Electrical Characteristics (2.7V)

$\mathrm{V}+=+2.7 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
SR	Slew Rate	Voltage follower, 1 V step, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ @ $1.35 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		0.015		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	Sourcing		25		kHz

DC Electrical Characteristics (5V)

$\mathrm{V}_{\mathrm{V}+}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{V}^{-}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage			0.9	7	mV
					9	
TCVos	Input Offset Voltage Temperature Drift			2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			1	10	pA
					500	
los	Input Offset Current			0.01	0.5	pA
					75	
$\mathrm{R}_{\text {IN }}$	Input Resistance			>10		T Ω
+PSRR	Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V}+} \leq 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}-}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {out }}=2.5 \mathrm{~V} \end{aligned}$	65	95		dB
-PSRR	Negative Power Supply Rejection Ratio	$\begin{aligned} & -5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V}^{-}} \leq-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}^{+}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=-2.5 \mathrm{~V} \end{aligned}$	65	95		dB
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-0.2 \mathrm{~V}$ to +5.2 V	57	80		dB
$\mathrm{Cl}_{\text {IN }}$	Common-Mode Input Capacitance			3		pF
$V_{\text {OUT }}$	Output Voltage Swing	Output HIGH, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$, Specified as $\mathrm{V}_{\mathrm{V}+}-\mathrm{V}_{\text {Out }}$		0.3	1.5	mV
					1.5	
		Output LOW, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$		0.3	1.5	
					1.5	
		Output HIGH, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$, Specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {Out }}$		15	50	
					75	
		Output LOW, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		15	50	
					75	
I_{sc}	Output Short-Circuit Current ${ }^{(7)}$	Sourcing, $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$	80	100		mA
		Sinking, $\mathrm{V}_{\text {Out }}=5 \mathrm{~V}$	80	100		
Avol	Voltage Gain	Sourcing		500		V/mV
		Sinking		500		
Is	Supply Current	$\mathrm{V}_{\mathrm{V}_{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2$		20	50	$\mu \mathrm{A}$

AC Electrical Characteristics (5V)

$\mathrm{V}+=+5 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
SR	Slew Rate	Voltage follower, 1 V step, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ @ $1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		0.02		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	Sourcing		25		kHz

DC Electrical Characteristics (10V)

$\mathrm{V}_{\mathrm{V}_{+}}=+10 \mathrm{~V} ; \mathrm{V}_{\mathrm{V}-}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}_{+} / 2} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
$V_{\text {OS }}$	Input Offset Voltage			0.9	7	

AC Electrical Characteristics (10V)

$\mathrm{V}+=+10 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}+} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$, unless noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Units
SR	Slew Rate	Voltage follower, 1V step, RL $100 \mathrm{k} @ 1.35 \mathrm{~V}$ $V_{\text {OUT }}=1 V_{\text {P-P }}$		0.02		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product		25		kHz	
ϕ_{M}	Phase Margin		50		\circ	
G_{M}	Gain Margin	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1.0 \mathrm{~V}$	15		dB
e_{N}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	110	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$		
i_{N}		0.03	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$			

Application Information

Input Common Mode Voltage

The MIC7111 tolerates input overdrive by at least 300 mV beyond either rail without producing phase inversion.

If the absolute maximum input voltage is exceeded, the input current should be limited to $\pm 5 \mathrm{~mA}$ maximum to prevent reducing reliability. A $10 \mathrm{k} \Omega$ series input resistor, used as a current limiter, will protect the input structure from voltages as large as 50 V above the supply or below ground. See Figure 1.

Figure 1. Input Current-Limit Protection

Output Voltage Swing

Sink and source output resistances of the MIC7111 are equal. Maximum output voltage swing is determined by the load and the approximate output resistance. The output resistance is presented in Equation 1:

$$
\begin{equation*}
\mathrm{R}_{\text {OUT }}=\frac{\mathrm{V}_{\mathrm{DROP}}}{\mathrm{I}_{\text {LOAD }}} \tag{Eq. 1}
\end{equation*}
$$

$V_{\text {DROP }}$ is the voltage dropped within the amplifier output stage. $\mathrm{V}_{\text {DROP }}$ and $\mathrm{I}_{\text {LOAD }}$ can be determined from the V_{O} (output swing) portion of the appropriate electrical characteristics table. $I_{\text {LOAD }}$ is equal to the typical output high voltage minus $\mathrm{V}+/ 2$ and divided by $\mathrm{R}_{\text {LOAD }}$. For example, using the DC Electrical Characteristics (5V) table, the typical output voltage drop using a $2 \mathrm{k} \Omega$ load (connected to $\mathrm{V}+/ 2$) is 0.015 V , which produces an $\mathrm{I}_{\text {LOAD }}$ of:

$$
\begin{equation*}
\frac{2.5 \mathrm{~V}-0.015 \mathrm{~V}}{2 \mathrm{k} \Omega}=1.243 \mathrm{~mA} \tag{Eq. 2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
R_{\text {OUT }}=\frac{15 \mathrm{mV}}{1.243 \mathrm{~mA}}=12.1=12 \Omega \tag{Eq. 3}
\end{equation*}
$$

Driving Capacitive Loads

Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces op-amp system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The MIC7111 can typically drive a 500pF capacitive load connected directly to the output when configured as a unity-gain amplifier.

Using Large-Value Feedback Resistors

A large-value feedback resistor (>500k Ω) can reduce the phase margin of a system. This occurs when the feedback resistor acts in conjunction with input capacitance to create phase lag in the feedback signal. Input capacitance is usually a combination of input circuit components and other parasitic capacitance, such as amplifier input capacitance and stray printed circuit board capacitance

Figure 2 illustrates a method of compensating phase lag caused by using a large-value feedback resistor. Feedback capacitor $C_{F B}$ introduces sufficient phase lead to overcome the phase lag caused by feedback resistor $R_{F B}$ and input capacitance $C_{I N}$. The value of $C_{F B}$ is determined by first estimating C_{IN} and then applying the following formula:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{IN}} \times \mathrm{C}_{\mathrm{IN}} \leq \mathrm{R}_{\mathrm{FB}} \times \mathrm{C}_{\mathrm{FB}} \tag{Eq. 4}
\end{equation*}
$$

Figure 2. Cancelling Feedback Phase Lag

Since a significant percentage of C_{IN} may be caused by board layout, it is important to note that the correct value of $C_{F B}$ may change when changing from a breadboard to the final circuit layout.

Typical Circuits

Some single-supply, rail-to-rail applications - for which the MIC7111 is well suited - are shown in the circuit diagrams of Figures 3 through 8.

Figure 3. Noninverting Amplifier

Figure 4. Noninverting Amplifier Behavior

Figure 5. Voltage Follower/Buffer

Figure 6. Voltage-Controlled Current Sink

Figure 7. Square Wave Oscillator

Figure 8. AC-Coupled Inverting Amplifier

Package Information ${ }^{(1)}$ and Recommended Landing Pattern

SOT23-5 (M5)

Note:

1. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

