

STGW40NC60WD

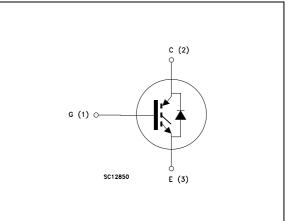
40 A - 600 V - ultra fast IGBT

Features

- Low C_{RES} / C_{IES} ratio (no cross conduction susceptibility)
- IGBT co-packaged with ultra fast free-wheeling diode
- High frequency operation

Applications

- High frequency inverters, UPS
- Motor drivers
- HF, SMPS and PFC in both hard switch and resonant topologies
- Welding
- Induction heating


Description

This IGBT utilizes the advanced PowerMESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior.)050lete

Figure 1.

Internal schematic diagram

Order code	Marking	Package	Packaging
STGW40NC60WD	GW40NC60WD	TO-247	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves) 7
3	Test circuit
4	Package mechanical data
5	Revision history
	Electrical ratings 3 Electrical characteristics 4 2.1 Electrical characteristics (curves) 7 Test circuit 10 Package mechanical data Package mechanical data 11 Revision history 13
	05016
	Ob Ob
	, ict(S)
	produ.
	eter
0050	
0°	

1

Electrical ratings

Table 2.	Absolute	maximum	ratings
	Absolute	maximum	raungs

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage ($V_{GE} = 0$)	600	V
I _C ⁽¹⁾	Collector current (continuous) at 25 °C	70	А
I _C ⁽¹⁾	Collector current (continuous) at 100 °C	40	А
I _{CL} ⁽²⁾	Turn-off latching current	230	А
I _{CP} ⁽³⁾	Pulsed collector current	230	А
V_{GE}	Gate-emitter voltage	±20	V
١ _F	Diode RMS forward current at T_{C} =25 °C	30	А
I _{FSM}	Surge non repetitive forward current (tp=10 ms sinusoidal)	120	A
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	250	W
Тj	Operating junction temperature	– 55 to 150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

2. Vclamp = 80%(V_{CES}), Tj = 150 °C, R_G = 10 $\Omega,$ V_{GE}= 15 V

3. Pulse width limited by max. junction temperature allowed

Table 3. Thermal resistance

	Symbol	Parameter	Value	Unit
	R _{thj-case}	Thermal resistance junction-case max (IGBT)	0.5	°C/W
20	R _{thj-case}	Thermal resistance junction-case max (diode)	1.5	°C/W
NSO'	R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W
002				

Electrical characteristics 2

(T_{CASE}=25 °C unless otherwise specified)

Table 4.	Static
	olulio

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			v
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A V _{GE} = 15 V, I _C = 30 A, T _C =125 °C		2.1 1.9	2.5	v v
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3.75	X	5.75	v
I _{CES}	Collector-emitter cut-off current (V _{GE} = 0)	V _{GE} = 600 V V _{GE} = 600 V, T _C =125 °C	6	20	500 5	μA mA
I _{GES}	Gate-emitter cut-off current (V _{CE} = 0)	V _{GE} = ± 20 V			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 V_{,} I_{C} = 30 A$		20		S

Table 5. Dynamic

	9 _{fs}	Forward transconductance	$v_{CE} = 15 v_{,} I_{C} = 30 A$		20		5
	Table 5. Symbol	Dynamic Parameter	Test conditions	Min.	Тур.	Max.	Unit
	C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0		2900 298 59		pF pF pF
	Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 390 \text{ V}, I_C = 30 \text{ A},$ $V_{GE} = 15 \text{ V}$ (see Figure 18)		126 16 46		nC nC nC
Obsole			·				

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V}$ (see Figure 17)		33 12 2600		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay timE Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>(see Figure 17)</i>		32 14 2300		ns ns A/µs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V}$ (see Figure 17)		26 168 36	L'S	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$\begin{split} V_{CC} &= 390 \text{ V}, \text{ I}_{C} = 30 \text{ A}, \\ \text{R}_{GE} &= 10 \ \Omega, \text{ V}_{GE} = 15 \text{ V}, \\ \text{T}_{C} &= 125 \ ^{\circ}\text{C} \ (\text{see Figure 17}) \end{split}$	0	54 213 67		ns ns ns

Table 6. Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V}$ (see Figure 17)		302 349 651		μJ μJ μJ
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>(see Figure 17)</i>		553 750 1303		μJ μJ μJ

Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2 Eon include diode recovery energy. If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25 °C and 125 °C)

2. Turn-off losses include also the tail of the collector current

1050

V _F t _{rr} Q _{rr} I _{rrm} t _{rr}	Forward on-voltage Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{F} = 30 \text{ A}$ $I_{F} = 30 \text{ A}, T_{C} = 125 \text{ °C}$ $I_{F} = 30 \text{ A}, V_{R} = 50 \text{ V},$ $di/dt = 100 \text{ A}/\mu \text{s}$ (see Figure 20)		2.4 1.8 45 56		V V ns
Q _{rr} I _{rrm}	Reverse recovery charge	di/dt =100 A/µs		-		
ter		(0001.90.0 20)		2.55		nC A
-	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{F} = 30 \text{ A}, V_{R} = 50 \text{ V},$ $T_{C} = 125 \text{ °C},$ $di/dt = 100 \text{ A}/\mu\text{s}$ <i>(see Figure 20)</i>		100 290 5.8	Ś	ns nC A
	Reverse recovery current	leteP	<i>(</i> 0'			
		bsole				
	duct(S)					
R	1001					

 Table 8.
 Collector-emitter diode

HV31645

12 VGE(V)

HV31690

 $V_{GE} = 15V$

lc=50A

lc=30A

150 TJ (°C)

lc=20A

50

100

Electrical characteristics (curves) 2.1

Figure 2. **Output characteristics**

Transfer characteristics Figure 3.

lc(A)

200

150

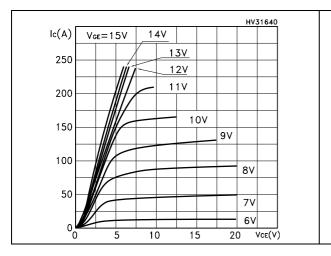
100

50

0

VCE(SAT)

2.6


2.4

2.2

2.0

1.8

1.6



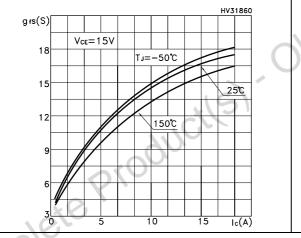
Figure 5.

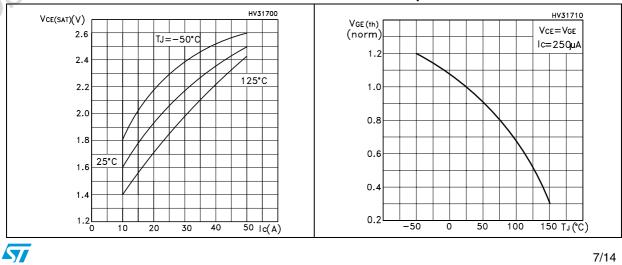
6

3

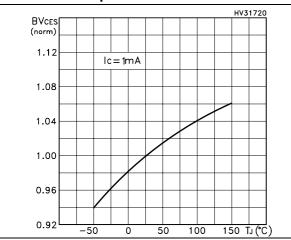
9

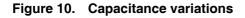
 $V_{CE} = 15V$




Figure 6.

Collector-emitter on voltage vs collector current

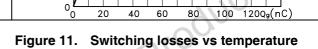

0

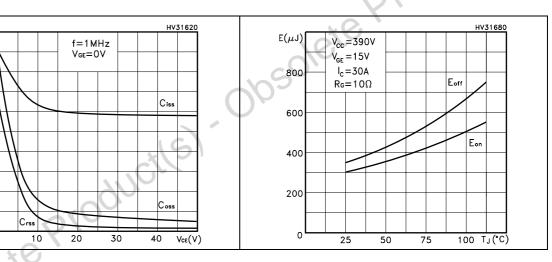

-50

HV31630

Figure 8. Normalized breakdown voltage vs Figure 9. temperature

C(pF)


4000


3000

2000

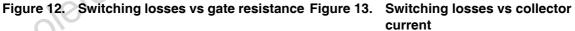
1000

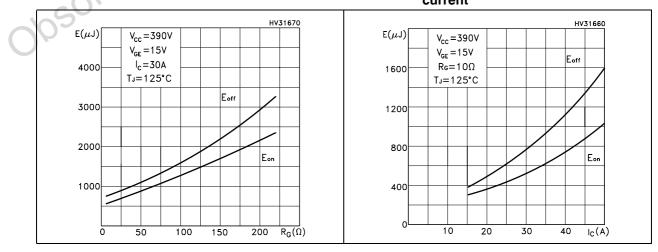
0

VGE(V)

15

12


9


6

3

Vce=390V

lc=30A

Gate charge vs gate-emitter voltage

Figure 14. Thermal impedance

Figure 15. Turn-off SOA

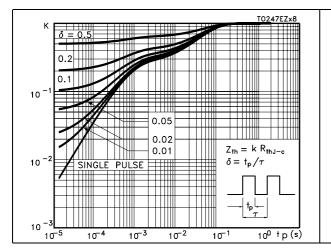
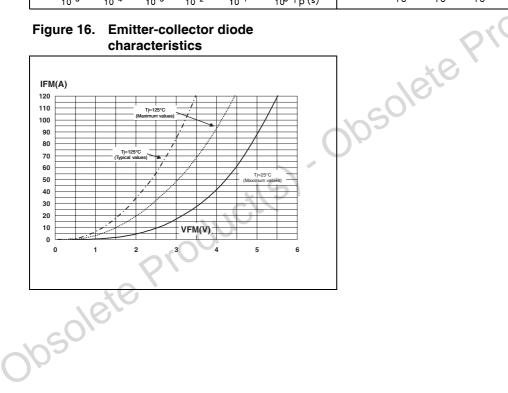
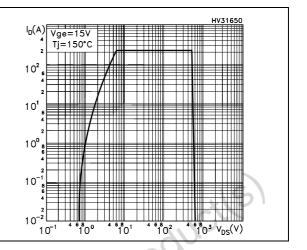




Figure 16. Emitter-collector diode characteristics

57

3 Test circuit

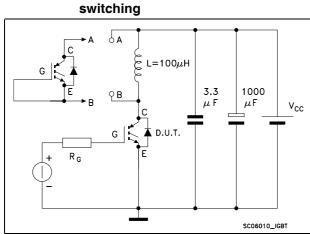


Figure 17. Test circuit for inductive load

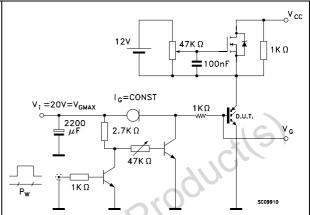
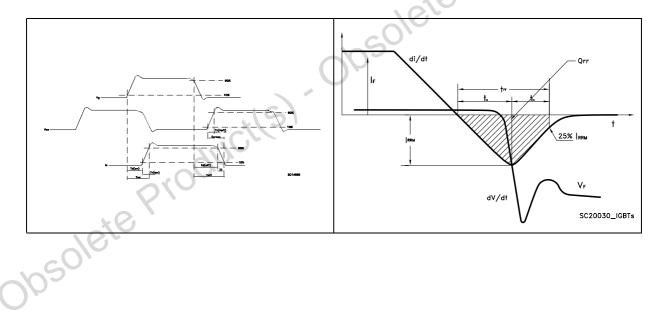
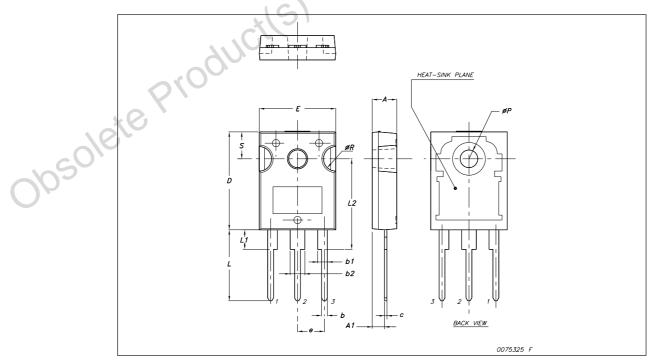



Figure 19. Switching waveforms

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

obsolete Product(s). Obsolete Product(s)

ſ

57

TO-247 mechanical data					
Dim.	mm.				
Dini.	Min.	Тур	Max.		
А	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
с	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
e		5.45	\mathcal{O}		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
øP	3.55	5	3.65		
øR	4.50	Y	5.50		
S		5.50			

5 Revision history

Table 9. Document revision history

	Date	Revision	Changes	
	8-Jun-2006	1	First release	
	08-Nov-2006	2	Modified <i>Dynamic</i>	
	01-Feb-2008	3	Updated Table 7	
	09-Jul-2008	4	Added new feature	
09-Jul-2008 4 Added new feature				

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

748152A FGH60T65SHD_F155 APT100GT60B2RG APT13GP120BG APT20GN60BG APT20GT60BRDQ1G APT25GN120B2DQ2G APT35GA90BD15 APT36GA60BD15 APT40GP60B2DQ2G APT40GP90B2DQ2G APT50GN120B2G APT50GT60BRG APT64GA90B2D30 APT70GR120J NGTB10N60FG NGTB30N60L2WG IGP30N60H3XKSA1 STGB15H60DF STGFW20V60DF STGFW30V60DF STGFW40V60F STGWA25H120DF2 FGB3236_F085 APT25GN120BG APT25GR120S APT30GN60BDQ2G APT30GN60BG APT30GP60BG APT30GS60BRDQ2G APT30N60BC6 APT35GP120JDQ2 APT36GA60B APT45GR65B2DU30 APT50GP60B2DQ2G APT68GA60B APT70GR65B APT70GR65B2SCD30 GT50JR22(STA1ES) TIG058E8-TL-H IDW40E65D2 SGB15N120ATMA1 NGTB50N60L2WG STGB10H60DF STGB20V60F STGB40V60F STGFW80V60F IGW40N120H3FKSA1 RJH60D7BDPQ-E0#T2 APT40GR120B