Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD78F0034Y

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F0034Y is a product of the μ PD780034Y Subseries in the 78K/0 Series and equivalent to the μ PD780034Y with a flash memory in place of internal ROM.

The μ PD78F0034Y incorporates a flash memory, which can be programmed and erased without being removed from the substrate.

Functions are described in detail in the following user's manuals. Be sure to read them before designing.

μPD780024, 780024Y, 780034, 780034Y Subseries User's Manual : U12022E 78K/0 Series User's Manual — Instructions : U12326E

FEATURES

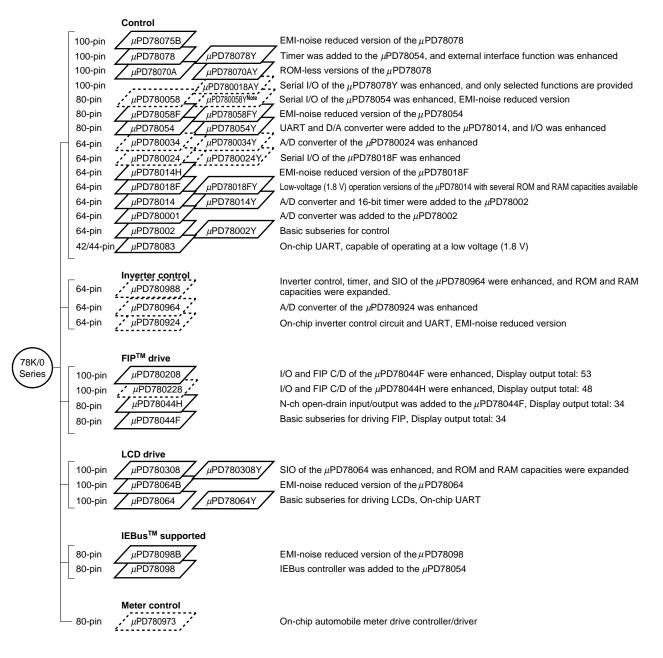
- I²C bus serial interface supporting multimaster
- Pin-compatible with mask ROM versions (except VPP pin)
- Flash memory : 32 Kbytes
- Internal high-speed RAM : 1024 bytes^{Note}
- Power supply voltage : VDD = 2.7 to 5.5 V

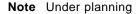
Note The flash memory and internal high-speed RAM capacities can be changed with the memory size switching register (IMS).

Remark For the differences between the flash memory versions and the mask ROM versions, refer to **1.** DIFFERENCES BETWEEN μPD78F0034Y AND MASK ROM VERSIONS.

ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78F0034YCW	64-pin plastic shrink DIP (750 mils)	Flash memory
μPD78F0034YGC-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)	Flash memory
μPD78F0034YGK-8A8	64-pin plastic LQFP (12 $ imes$ 12 mm)	Flash memory


The information in this document is subject to change without notice.


* 78K/0 SERIES DEVELOPMENT

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Products in mass production Products under development

Y subseries products are compatible with I²C bus.

The major functional differences among the Y subseries are shown below.

Subserie	Function ROM Capacity Col Subseries Name Col Col Col		Configuration of Serial Interface	Configuration of Serial Interface		V _{DD} MIN. Value
Control	μPD78078Y	48 K to 60 K			88	1.8 V
	μPD78070AY	-	3-wire with automatic transmit/receive function 3-wire/UART	: 1 ch : 1 ch	61	2.7 V
	μΡD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function Time-division 3-wire I ² C bus (multimaster supported)	: 1 ch : 1 ch : 1 ch	88	
	μΡD780058Y	24 K to 60 K	3-wire/2-wire/l ² C 3-wire with automatic transmit/receive function 3-wire/time-division UART	: 1 ch : 1 ch : 1 ch	68	1.8 V
	μPD78058FY	48 K to 60 K	3-wire/2-wire/l ² C	: 1 ch	69	2.7 V
	μPD78054Y	16 K to 60 K	3-wire with automatic transmit/receive function 3-wire/UART	: 1 ch : 1 ch		2.0 V
	μPD780034Y	8 K to 32 K	UART	: 1 ch	51	1.8 V
	μPD780024Y		3-wire I ² C bus (multimaster supported)	: 1 ch : 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/l ² C 3-wire with automatic transmit/receive function	: 1 ch : 1 ch	53	
	μΡD78014Υ	8 K to 32 K	3-wire/2-wire/SBI/I ² C 3-wire with automatic transmit/receive function	: 1 ch : 1 ch		2.7 V
	μPD78002Y	8 K to 16 K	3-wire/2-wire/SBI/I ² C	: 1 ch		
LCD drive	μΡD780308Υ	48 K to 60 K	3-wire/2-wire/l ² C 3-wire/time-division UART 3-wire	: 1 ch : 1 ch : 1 ch	57	2.0 V
	μΡD78064Υ	16 K to 32 K	3-wire/2-wire/l ² C 3-wire/UART	: 1 ch : 1 ch		

Remark The functions other than the serial interface are common to the subseries without Y.

OVERVIEW OF FUNCTION

lt	em	Function		
Internal Flash memory		32 Kbytes ^{Note}		
memory High-speed RAM		1024 bytes ^{Note}		
Memory space		64 Kbytes		
General-purpose	registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Minimum instruc	tion execution time	On-chip minimum instruction execution time cycle modification function		
	Vhen main system lock selected	0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (at 8.38-MHz operation)		
	Vhen subsystem lock selected	122 μs (at 32.768-kHz operation)		
Instruction set		 16-bit operate • multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, Boolean operation) BCD adjust, etc. 		
I/O ports		Total : 51 • CMOS input : 8 • CMOS I/O : 39		
A/D converter		N-ch open-drain I/O (5-V withstand voltage) : 4 10-bit resolution × 8 channels		
Serial interface		• 3-wire serial I/O mode : 1 channel • UART mode : 1 channel • I ² C bus mode (multimaster supported) : 1 channel		
Timer		16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel		
Timer output		3 (8-bit PWM output capable: 2)		
Clock output		131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (at 8.38-MHz operation with main system clock) 32.768 kHz (at 32.768-kHz operation with subsystem clock)		
Buzzer output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (at 8.38-MHz operation with main system clock)		
Vectored interru	ot Maskable	Internal : 13, External : 5		
source	Non-maskable	Internal : 1		
	Software	1		
Test input		Internal : 1, External : 1		
Power supply vo	Itage	V _{DD} = 2.7 to 5.5 V		
Operating ambie	nt temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		
Package		 64-pin plastic shrink DIP (750 mils) 64-pin plastic QFP (14 × 14 mm) 64-pin plastic LQFP (12 × 12 mm) 		

Note The capacities of the flash memory and the internal high-speed RAM can be changed with the memory size switching register (IMS).

 \star

★

*

PIN CONFIGURATION (TOP VIEW)

 64-pin Plastic Shrink DIP (750 mils) μPD78F0034YCW

P40/AD0 ⊖►	1	64 P67/ASTB
P41/AD1 ⊖ ►	2	63 P66/WAIT
P42/AD2 🖂 🗕 🗕	3	62 P65/WR
P43/AD3 🖂 🗕	4	61 P64/RD
P44/AD4 🖂 🗕	5	60 🖛 – O P75/BUZ
P45/AD5 🖂 🗕	6	59 🛶 🛏 P74/PCL
P46/AD6 ⊖ ►	7	58 🛶 🕒 P73/TI51/TO51
P47/AD7 ⊖ ∢ →	8	57 - C P72/TI50/TO50
P50/A8 🖂 🗕	9	56 🖛 O P71/TI01
P51/A9 🖂 🗕	10	55 🖛 P70/TI00/TO0
P52/A10 O < ►	11	54 P03/INTP3/ADTRG
P53/A11 O	12	53 P02/INTP2
P54/A12 O-	13	52 P01/INTP1
P55/A13 O	14	51 P00/INTP0
P56/A14 O-	15	50 Vss1
P57/A15 O	16	49 🖛 🔿 X1
Vss0 O	17	48 X2
VDD0 O	18	47 - VPP
P30 O	19	46 🖛 🔿 XT1
P31 O 	20	45 —— XT2
P32/SDA0 ⊖	21	44 RESET
P33/SCL0 ⊖	22	43 —— AVDD
P34 O	23	42 - O AVREF
P35 O 	24	41 – O P10/ANI0
P36 O	25	40 🗕 🔿 P11/ANI1
P20/SI30 ⊖ ►	26	39 🗕 🔿 P12/ANI2
P21/SO30 〇	27	38 🗕 🔿 P13/ANI3
P22/SCK30	28	37 - 0 P14/ANI4
P23/RxD0 ⊖ ►	29	36 - 0 P15/ANI5
P24/TxD0 ⊖ ►	30	35 🗕 🖳 P16/ANI6
P25/ASCK0 O	31	34 P17/ANI7
VDD1 O	32	33 AVss

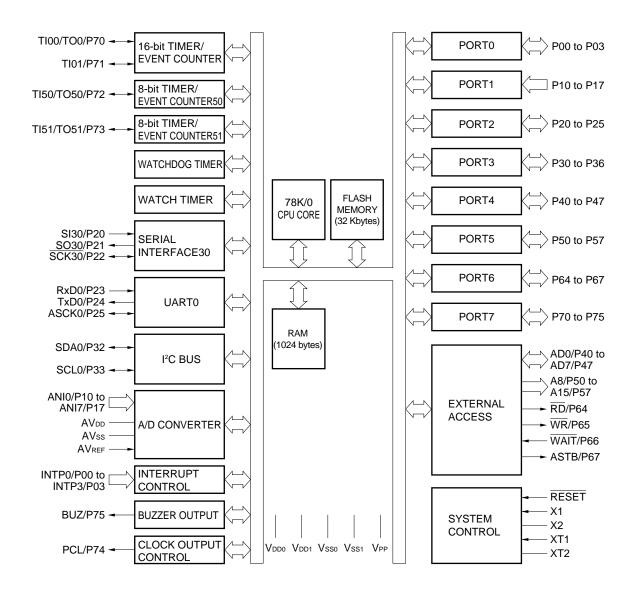
Cautions 1. Connect the VPP pin directly to Vss0 or Vss1 in normal operation mode. 2. Connect the AVss pin to Vss0.

Remark When the μPD78F0034Y is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} independently and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

NEC

Phase-out/Discontinued

- 64-pin Plastic QFP (14 \times 14 mm) $\mu \text{PD78F0034YGC-AB8}$
- 64-pin Plastic LQFP (12 × 12 mm) μPD78F0034YGK-8A8



Cautions 1. Connect the VPP pin directly to Vss0 or Vss1 in normal operation mode. 2. Connect the AVss pin to Vss0.

Remark When the μPD78F0034Y is used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} independently and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

A8 to A15	: Address Bus	PCL	: Programmable Clock
AD0 to AD7	: Address/Data Bus	RD	: Read Strobe
ADTRG	: AD Trigger Input	RESET	: Reset
ANI0 to ANI7	: Analog Input	RxD0	: Receive Data
ASCK0	: Asynchronous Serial Clock	SCK30	: Serial Clock
ASTB	: Address Strobe	SCL0	: Serial Clock
AVdd	: Analog Power Supply	SDA0	: Serial Data
AVREF	: Analog Reference Voltage	SI30	: Serial Input
AVss	: Analog Ground	SO30	: Serial Output
BUZ	: Buzzer Clock	TI00, TI01, TI50, TI51	: Timer Input
INTP0 to INTP3	: Interrupt from Peripherals	TO0, TO50, TO51	: Timer Output
P00 to P03	: Port 0	TxD0	: Transmit Data
P10 to P17	: Port 1	Vddo, Vdd1	: Power Supply
P20 to P25	: Port 2	Vpp	: Programming Power Supply
P30 to P36	: Port 3	Vsso, Vss1	: Ground
P40 to P47	: Port 4	WAIT	: Wait
P50 to P57	: Port 5	WR	: Write Strobe
P64 to P67	: Port 6	X1, X2	: Crystal (Main System Clock)
P70 to P75	: Port 7	XT1, XT2	: Crystal (Subsystem Clock)

BLOCK DIAGRAM

 \star

Phase-out/Discontinued

CONTENTS

1. DIFFERENCES BETWEEN μ PD78F0034Y AND MASK ROM VERSIONS
2. PIN FUNCTIONS
2.1 Port Pins 11
2.2 Non-Port Pins 12
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 14
3. MEMORY SIZE SWITCHING REGISTER (IMS)16
4. FLASH MEMORY PROGRAMMING 17
4.1 Selection of Transmission Method 17
4.2 Function of Flash Memory Programming 18
4.3 Connection of Flashpro II 18
5. ELECTRICAL SPECIFICATIONS
6. PACKAGE DRAWINGS
APPENDIX A. DEVELOPMENT TOOLS41
APPENDIX B. RELATED DOCUMENTS

1. DIFFERENCES BETWEEN µPD78F0034Y AND MASK ROM VERSIONS

The μ PD78F0034Y is a product provided with a flash memory that enables on-board writing, erasing, and rewriting of programs with the device mounted on the target system.

Phase-out/Discontinued

The functions of the μ PD78F0034Y (except the functions specified for flash memory) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS).

Table 1-1 shows the differences between the flash memory version (μ PD78F0034Y) and the mask ROM versions (μ PD780031Y, 780032Y, 780033Y, and 780034Y).

	Item	μPD78F0034	Mask ROM Versions	
	Internal ROM type	Flash memory	Mask ROM	
	Internal ROM capacity	32 Kbytes	μPD780031Y : 8 Kbytes μPD780032Y : 16 Kbytes μPD780033Y : 24 Kbytes μPD780034Y : 32 Kbytes	
	Internal high-speed RAM capacity	1024 bytes	μPD780031Y : 512 bytes μPD780032Y : 512 bytes μPD780033Y : 1024 bytes μPD780034Y : 1024 bytes	
	Internal ROM and internal high-speed RAM capacity changeable/not changeable with memory size switching register (IMS)	Changeable ^{Note}	Not changeable	
	IC pin	Not provided	Provided	
	VPP pin	Provided	Not provided	
۲	Power supply voltage	V _{DD} = 2.7 to 5.5 V V _{DD} = 1.8 to 5.5 V		
	Electrical specifications, recommended soldering conditions	Refer to the data sheet of individual products.		

Table 1-1. Differences between μ PD78F0034Y and Mask ROM Versions

Note Flash memory is set to 32 Kbytes and internal high-speed RAM is set to 1024 bytes by RESET input.

* Caution There are differences in noise immunity and noise radiation between the flash memory versions and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for commercial samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Port Pins (1/2)

Pin Name	I/O	Function			Alternate Function
P00	I/O	Port 0			INTP0
P01		4-bit input/output port. Input/output can be specified b	it wice		INTP1
P02			n on-chip pull-up resistor can be used by		INTP2
P03		software.			INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port.		Input	ANI0 to ANI7
P20	I/O	Port 2		Input	SI30
P21		6-bit input/output port.	it wice		SO30
P22		Input/output can be specified b When used as an input port, an	n on-chip pull-up resistor can be used by		SCK30
P23		software.			RxD0
P24					TxD0
P25					ASCK0
P30	I/O	Port 3	N-ch open-drain input/output port.	Input	_
P31		7-bit input/output port.	LEDs can be driven directly.		
P32		Input/output can be specified bit-wise.			SDA0
P33					SCL0
P34			When used as an input port, an on-chip pull-		
P35			up resistor can be used by software.		
P36					
P40 to P47	I/O	Port 4 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software. Test input flag (KRIF) is set to 1 by the falling-edge detection.			AD0 to AD7
P50 to P57	I/O	Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by software.		Input	A8 to A15
P64	I/O	Port 6		Input	RD
P65	1	4-bit input/output port.	it wise		WR
P66		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by			WAIT
P67		software.			ASTB

2.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7	Input	TI00/TO0
P71		6-bit input/output port.		TI01
P72		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be used by		TI50/TO50
P73		software.		TI51/TO51
P74				PCL
P75				BUZ

2.2 Non-Port Pins (1/2)

	Pin Name	I/O	Function	After Reset	Alternate Function
	INTP0	Input	External interrupt request input for which the effective edge (rising edge,	Input	P00
	INTP1		falling edge, or both rising edge and falling edge) can be specified.		P01
	INTP2	INTP2			P02
	INTP3				P03/ADTRG
	SI30	Input	Serial interface serial data input.	Input	P20
	SO30	Output	Serial interface serial data output.	Input	P21
	SDA0	I/O	Serial interface serial data input/output.	Input	P32
	SCK30	I/O	Serial interface serial clock input/output.	Input	P22
	SCL0				P33
	RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
	TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
	ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
*	TI00 Input External count clock input to 16-bit timer (TM0). Capture trigger signal input to TM0 capture register (CR01).		External count clock input to 16-bit timer (TM0). Capture trigger signal input to TM0 capture register (CR01).	Input	P70/TO0
*	TI01		Capture trigger signal input to TM0 capture register (CR00).		P71
	TI50		External count clock input to 8-bit timer (TM50).	1	P72/TO50
	TI51		External count clock input to 8-bit timer (TM51).		P73/TO51
	TO0	Output	16-bit timer (TM0) output.	Input	P70/TI00
	TO50		8-bit timer (TM50) output (alternate function is 8-bit PWM output).	Input	P72/TI50
	TO51		8-bit timer (TM51) output (alternate function is 8-bit PWM output).]	P73/TI51
	PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74
	BUZ	Output	Buzzer output.	Input	P75
	AD0 to AD7	I/O	Lower address/data bus for extending memory externally.	Input	P40 to P47
	A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
	RD	Output	tput Strobe signal output for read operation of external memory.		P64
	WR	1	Strobe signal output for write operation of external memory.]	P65
	WAIT	Input	Inserting wait for accessing external memory.	Input	P66
	ASTB	Output	Strobe output that externally latches address information output to port 4 and port 5 to access external memory.	Input	P67

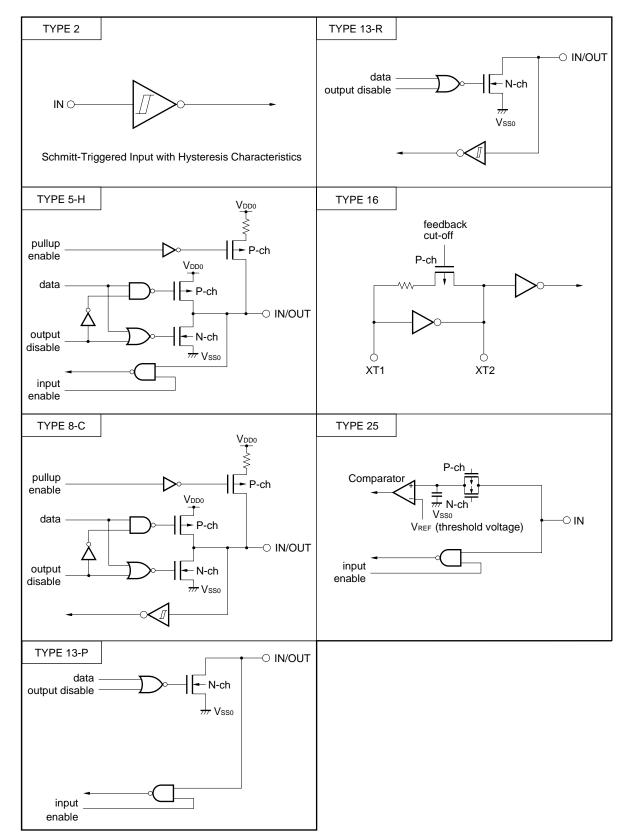
 \star

Phase-out/Discontinued

2.2 Non-Port Pins (2/2)

Pin Name	I/O	Function		Alternate Function
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input.	—	_
AVDD	—	A/D converter analog power supply. Set the voltage equal to VDD0 or VDD1.	_	_
AVss	—	A/D converter ground potential. Set the voltage equal to V _{SS0} or V _{SS1} .	-	_
RESET	Input	System reset input.	—	—
X1	Input	Connecting crystal resonator for main system clock oscillation.		_
X2	—			—
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	—	_
XT2	—		—	—
Vddo	—	Positive power supply for ports.	_	_
Vsso	—	Ground potential of ports.	_	_
Vdd1	—	Positive power supply (except ports).		_
Vss1	—	Ground potential (except ports).		_
Vpp	_	Applying high voltage for program write/verify. Connect directly to Vsso or Vss1 in normal operation mode.		_

* 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins


Table 2-1 shows the types of pin I/O circuits and recommended connection of unused pins. Refer to Figure 2-1 about the configuration of each type of I/O circuit.

Pin Name	Input/output Circuit Type	Input/Output	Recommended Connection of Unused Pins
P00/INTP0	8-C	Input	Independently connect to Vsso via a resistor.
P01/INTP1			
P02/INTP2			
P03/INTP3			
P10/ANI0 to P17/ANI7	25	Input	Independently connect to VDD0 or VSS0 via a resistor.
P20/SI30	8-C	Input/output	
P21/SO30	5-H		
P22/SCK30	8-C	•	
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31	13-P	Input/output	Independently connect to VDD0 via a resistor.
P32/SDA0	13-R		
P33/SCL0			
P34	8-C		Independently connect to VDD0 or VSS0 via a resistor.
P35	5-H		
P36	8-C		
P40/AD0 to P47/AD7	5-H	Input/output	Independently connect to VDD0 via a resistor.
P50/A8 to P57/A15	5-H	Input/output	Independently connect to VDD0 or VSS0 via a resistor.
P64/RD		Input/output	
P65/WR			
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C		
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H		
P75/BUZ			
RESET	2	Input	
XT1	16		Connect to VDD0.
XT2			Leave open.
AVdd	-		Connect to VDD0.
AVREF			Connect to Vsso.
AVss			
Vpp			Connect directly to Vsso or Vss1.

Table 2-1. Pin I/O Circuit Type

Phase-out/Discontinued

Figure 2-1 Pin Input/Output Circuit

*

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This register sets a part of internal memory not used by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal memory (ROM and RAM).

Phase-out/Discontinued

The IMS is set with an 8-bit memory manipulation instruction.

RESET input sets the IMS to CFH.

	7	6	5	4	3	2	1	0	Ac	ldress	After	reset	R/W	
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	F	FF0H	CF	ΞH	W	
								ROM3	ROM2	ROM1	ROM0	Selection	n of Internal ROM Capacit	ty
								0	0	1	0	8 Kbyte	es	
								0	1	0	0	16 Kby	tes	
								0	1	1	0	24 Kby	tes	
								1	0	0	0	32 Kby	tes	
k								1	1	1	1	60 Kby	tes (setting prohibited)	
								Other	than ab	ove		Setting	prohibited	
								RAM2	RAM1	RAM0	Selectio	on of Intern	al High-speed RAM Capacit	ty
								0	1	0	512 b	ytes		
								1	1	0	1024	bytes		
								Other	than ab	ove	Settin	g prohibit	ed	

Table 3-1 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

Table 3-1.	Set Value	of Memory	Size	Switching	Register
------------	-----------	-----------	------	-----------	----------

Target Mask ROM Versions	IMS Set Value
μPD780031Y	42H
μPD780032Y	44H
μPD780033Y	C6H
μΡD780034Y	C8H

***** Caution When using mask ROM versions, set values indicated in Table 3-1 to IMS.

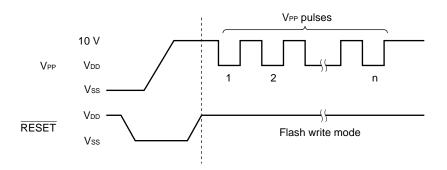
4. FLASH MEMORY PROGRAMMING

Writing to a flash memory can be performed without removing the memory from the target system. Writing is performed connecting the dedicated flash memory programmer (Flashpro II) to the host machine and the target system.

Also, it can be performed on an adapter for flash memory writing connected to the Flashpro II.

Remark Flashpro II is a product of Naitou Densei Machidaseisakusho Co., Ltd.

4.1 Selection of Transmission Method


Writing to a flash memory is performed using the Flashpro II with a serial transmission mode. One of the transmission methods in Table 4-1 is selected. The selection of the transmission method is made by using the format shown in Figure 4-1. Each transmission method is selected by the number of VPP pulses shown in Table 4-1.

Transmission Method	Channels	Pin	VPP Pulses
3-wire serial I/O	1	SI30/P20 SO30/P21 SCK30/P22	0
UART	1	RxD0/P23 TxD0/P24 ASCK0/P25	8
I ² C bus	1	SDA0/P32 SCL0/P33	4
Pseudo 3-wire serial I/O	1	P72/TI50/TO50 (serial clock input) P71/TI01 (serial data output) P70/TI00/TO0 (serial data input)	12

Table 4-1. Transmission Methods

Caution Be sure to select a communication system using the number of VPP pulses shown in Table 4-1.

Figure 4-1. Format of Transmission Method Selection

4.2 Function of Flash Memory Programming

Operations such as writing to a flash memory are performed by various command/data transmission and reception operations according to the selected transmission method. Table 4-2 shows major functions of flash memory programming.

Functions	Descriptions
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Delete time setting	Sets the memory delete time.
Silicon signature read	Outputs the device name and memory capacity, and device block information.

Table 4-2. Major Functions of Flash Memory Programming

4.3 Connection of Flashpro II

The connection of the Flashpro II and the μ PD78F0034Y differs according to the transmission method (3-wire serial I/O, UART, and I²C bus). The connection for each transmission method is shown in Figures 4-2, 4-3, and 4-4, respectively.

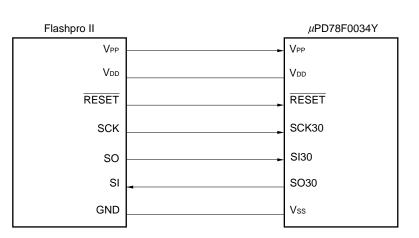
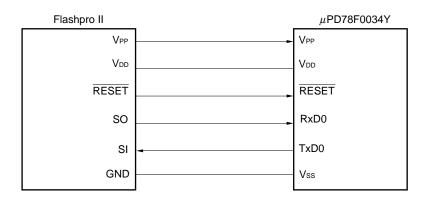
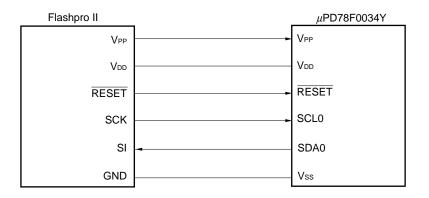




Figure 4-2. Connection of Flashpro II for 3-wire Serial I/O System

Figure 4-3. Connection of Flashpro II for UART System

Figure 4-4. Connection of Flashpro II for I²C Bus System

★ 5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Test Conditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +6.5	V
	Vpp				-0.3 to +11.0	V
	AVdd				-0.3 to V _{DD} + 0.3	V
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, X1, X2, XT1, XT2, RESET			-0.3 to V _{DD} + 0.3	V
	Vı2	P30 to P33	N-ch Open-drain		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo		I		-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pin		AVss - 0.3 to AVREF + 0.3 and -0.3 to VDD + 0.3	V
High-level output	Іон	Per pin	er pin -10		-10	mA
current		Total for P00 to P	03, P40 to P47, P50 to P57, P64	to P67, P70 to P75	-15	mA
		Total for P20	to P25, P30 to P36		-15	mA
Low-level output	I _{OL} Note	Per pin for P00	to P03, P20 to P25, P34 to	Peak value	20	mA
current		P36, P40 to P47, P64 to P67, P70 to P75		Effective value	10	mA
		Per pin for P3	30 to P33, P50 to P57	Peak value	30	mA
				Effective value	15	mA
		Total for P00	to P03, P40 to P47,	Peak value	50	mA
		P64 to P67, F	P70 to P75	Effective value	20	mA
		Total for P20	to P25	Peak value	20	mA
				Effective value	10	mA
		Total for P30	to P36	Peak value	100	mA
				Effective value	70	mA
		Total for P50	to P57	Peak value	100	mA
				Effective value	70	mA
Operating ambient temperature	ΤΑ				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (T_A = 25°C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Tes	MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz Unmeasured pins returne			15	pF	
I/O capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75,			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristics of the alternate function are the same as those of the port-pin function.

Main System Clock Oscillator Characteristics (T_A = -40 to 85° C, V_{DD} = 2.7 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	VPP X2 X1	Oscillation	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator	│	frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation stabilization time ^{Note 2}	After VDD reaches oscil- lation voltage range MIN.			4	ms
Crystal	VPP X2 X1	Oscillation	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
resonator	│	frequency (fx) ^{Note 1}		1.0		5.0	
		Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V			10	ms
	777					30	
External	X2 X1	X1 input	V _{DD} = 4.5 to 5.5 V	1.0		8.38	MHz
clock		frequency (fx) ^{Note 1}				5.0	
		X1 input	V _{DD} = 4.5 to 5.5 V	50		500	ns
	μPD74HCU04	high-/low-level width (tхн , tх∟)		85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 Time required to stabilize oscillation after reset or STOP mode release.

- Cautions 1. When using the main system clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always keep the ground point of the oscillator to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, switching back to the main system clock should be done after the oscillation stabilization time has been secured by the program.

Subsystem Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT2 XT1 VPP	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
	= <u>C4</u> =C3	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V		1.2	2	S
	·					10	
External clock		XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
		XT1 input high-/low-level width (txTH , txTL)		5		15	μs

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 Time required to stabilize oscillation after VDD reaches oscillation voltage MIN.

- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line in the above figures should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always keep the ground point of the oscillator to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Conditio	ns	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P24, P35, P40 to P47, P50 to P57, P64 to P67, P74, P75		0.7Vdd		Vdd	V
	Vih2	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET		0.8Vdd		Vdd	V
	Vінз	P30 to P33 (N-ch open-drain)		0.7Vdd		5.5	V
	Vih4	X1, X2		Vdd - 0.5		Vdd	V
	Vih5	XT1, XT2	V _{DD} = 4.5 to 5.5 V	0.8Vdd		Vdd	V
				0.9Vdd		Vdd	V
Input voltage, low	VIL1	P10 to P17, P21, P24, P35, P40 to P47, P50 to P57, P64 to P67, P74, P75		0		0.3Vdd	V
	VIL2	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET		0		0.2Vdd	V
	Vils	P30 to P33	VDD = 4.5 to 5.5 V	0		0.3Vdd	V
				0		0.2Vdd	V
	VIL4	X1, X2		0		0.4	V
	Vil5	XT1, XT2	V _{DD} = 4.5 to 5.5 V	0		0.2Vdd	V
				0		0.1Vdd	V
Output voltage,	Vон1	VDD = 4.5 to 5.5 V, IOH = -1 mA		Vdd - 1.0		Vdd	V
high		Іон = -100 µА		Vdd - 0.5		Vdd	V
Output voltage, low	Vol1	P30 to P33, P50 to P57	V _{DD} = 4.5 to 5.5 V, Io∟ = 15 mA		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	Vol2	IoL = 400 μA				0.5	V

Remark Unless otherwise specified, the characteristics of the alternate function are the same as those of the port-pin function.

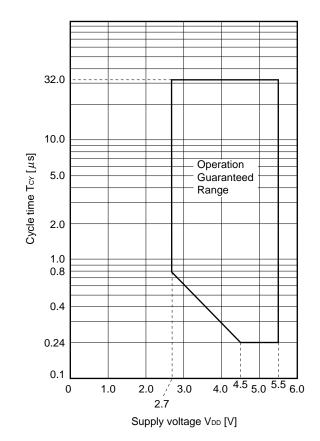
DC Characteristics (TA = -40 to +85°C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	μA
	ILIH2		X1, X2, XT1, XT2			20	μA
	Іцнз	VIN = 5.5 V	P30 to P33			80	μA
Input leakage current, low	ILIL1	V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	μA
	ILIL2		X1, X2, XT1, XT2			-20	μA
	ILIL3		P30 to P33			-3	μA
Output leakage current, low	Ігон	Vout = Vdd				3	μA
Output leakage current, low	Ilol	Vout = 0 V				-3	μA
Software pull- up resistance	R	V _{IN} = 0 V, P00 to P03, P20 to P25, P50 to P57, P64 to P67,	P34 to P36, P40 to P47, P70 to P75	15	30	90	kΩ
Power supply current ^{Note 1}	Idd1	8.38-MHz crystal oscillation operating mode	VDD = 5.0 V ±10%		9.5	19.0	mA
	IDD2	8.38-MHz crystal oscillation HALT mode	VDD = 5.0 V ±10%		1.6	3.2	mA
	Іддз	32.768-kHz crystal oscillation	Vdd = 5.0 V ±10%		100	200	μA
		operating mode ^{Note 2}	Vdd = 3.0 V ±10%		70	140	μA
	IDD4	32.768-kHz crystal oscillation	Vdd = 5.0 V ±10%		25	55	μA
		HALT mode ^{Note 2}	Vdd = 3.0 V ±10%		5	15	μA
	IDD5	XT1 = V _{DD1} , STOP mode	Vdd = 5.0 V ±10%		1	30	μA
		When feedback resistor is used	Vdd = 3.0 V ±10%		0.5	10	μA
	IDD6	XT1 = V _{DD1} , STOP mode	Vdd = 5.0 V ±10%		0.1	30	μA
		When feedback resistor is not used	Vdd = 3.0 V ±10%		0.05	10	μA

Notes 1. Does not include the current flowing into the on-chip pull-up resistor, the AVREF current, and port current.

- 2. When the main system clock is stopped.
- **Remark** Unless otherwise specified, the characteristics of the alternate function are the same as those of the port-pin function.

AC Characteristics


(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	-	Test Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with	V _{DD} = 4.5 to 5.5 V	0.24		32	μs
(Min. instruction		main system clock		0.8		32	μs
execution time)		Operating with subs	system clock	40 ^{Note 1}	122	125	μs
TI00, TI01 input	ttiho, ttilo	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		2/fsam + 0.1 ^{Note 2}			μs
high-/low-level width				2/fsam + 0.2 ^{Note 2}			μs
TI50, TI51 input frequency	fti5			0		4	MHz
TI50, TI51 input high-/low-level width	ttih5, ttil5			100			ns
Interrupt request input high-/low -level width	tinth, tintl	INTP0 to INTP3, P4	0 to P47	1			μs
RESET low-level width	trsl			10			μs

Notes 1. Value when using the external clock. When using a crystal resonator, the value becomes 114 μ s (MIN.).

Selection of fsam = fx, fx/4, fx/64 is possible with bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes fsam = fx/8.

TCY VS VDD (at main system clock operation)

Phase-out/Discontinued

(2) Read/Write Operation (T_A = -40 to + 85°C, V_{DD} = 4.5 to 5.5 V) (1/2)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5tcy		ns
Address setup time	tads		tcy - 40		ns
Address hold time	tadh		6		ns
Data input time from address	tadd1			(2 + 2n)tcy - 54	ns
	tadd2			(3 + 2n)tcy - 60	ns
Address output time from $\overline{\text{RD}} {\downarrow}$	t RDAD		0	100	ns
Data input time from $\overline{\text{RD}} {\downarrow}$	trdd1			(2 + 2n)tcy - 87	ns
	trdd2			(3 + 2n)tcy - 93	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr - 33		ns
	trdl2		(2.5 + 2n)tcy - 33		ns
$\overline{WAIT}\downarrow$ input time from $\overline{RD}\downarrow$	trdwt1			0.5tcy - 43	ns
	trdwt2			tcy - 43	ns
$\overline{\mathrm{WAIT}} {\downarrow}$ input time from $\overline{\mathrm{WR}} {\downarrow}$	twrwt			0.5tcy - 25	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		6		ns
WR low-level width	twrL1		(1.5 + 2n)tcr – 15		ns
$\overline{\text{RD}}\downarrow$ delay time from ASTB \downarrow	t ASTRD		6		ns
$\overline{\text{WR}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	t astwr		2tcy - 15		ns
ASTB [↑] delay time from RD [↑] in external fetch	t rdast		0.8tcy - 15	1.2tcy	ns
Address hold time from $\overline{RD}\uparrow$ in external fetch	t rdadh		0.8tcy - 15	1.2tcy + 30	ns
Write data output time from $\overline{\text{RD}} \uparrow$	trdwd		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		10	60	ns
Address hold time from $\overline{\rm WR} \uparrow$	twradh		0.8tcy - 15	1.2tcy + 30	ns
$\overline{\mathrm{RD}}$ delay time from $\overline{\mathrm{WAIT}}$	twtrd		0.8tcy	2.5tcy + 25	ns
\overline{WR}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtwr		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(2) Read/Write Operation (T_A = -40 to + 85°C, V_{DD} = 2.7 to 4.5 V) (2/2)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5tcy		ns
Address setup time	tads		0.5tcy - 54		ns
Address hold time	t adh		10		ns
Data input time from address	tadd1			(2 + 2n)tcy - 108	ns
	tadd2			(3 + 2n)tcr - 120	ns
Address output time from $\overline{\text{RD}} {\downarrow}$	t RDAD		0	200	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(2 + 2n)tcr - 148	ns
	trdd2			(3 + 2n)tcr - 162	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcr - 40		ns
	trdl2		(2.5 + 2n)tcy - 40		ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	trdwt1			0.5tcy - 60	ns
	trdwt2			tcy - 60	ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{WR} {\downarrow}$	twrwt			0.5tcy - 50	ns
WAIT low-level width	tw⊤∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twdн		10		ns
WR low-level width	twrL1		(1.5 + 2n)tcy - 30		ns
$\overline{RD} {\downarrow}$ delay time from $ASTB {\downarrow}$	t astrd		10		ns
$\overline{WR} \downarrow$ delay time from ASTB \downarrow	t astwr		2tcy - 30		ns
ASTB ^{\uparrow} delay time from \overline{RD}^{\uparrow} in external fetch	t rdast		0.8tcy - 30	1.2tcv	ns
Address hold time from \overline{RD}^{\uparrow} in external fetch	t rdadh		0.8tcy - 30	1.2tcy + 60	ns
Write data output time from $\overline{\text{RD}} \!\!\uparrow$	trdwd		40		ns
Write data output time from $\overline{\rm WR} \downarrow$	twrwd		20	120	ns
Address hold time from $\overline{WR}\uparrow$	twradh		0.8tcy - 30	1.2tcy + 60	ns
\overline{RD} delay time from \overline{WAIT}	twtrd		0.5tcy	2.5tcy + 50	ns
\overline{WR} delay time from \overline{WAIT}	twtwr		0.5tcy	2.5tcy + 50	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(3) Serial Interface (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V)

(a) 3-wire serial I/O mode (SCK30 ... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK30 cycle time	t ксү1	VDD = 4.5 to 5.5 V	954			ns
			1600			ns
SCK30 high-/low-level	tĸнı, tĸ∟ı	VDD = 4.5 to 5.5 V	tксү1/2 – 50			ns
width			tксү1/2 – 100			ns
SI30 setup time	tsik1	VDD = 4.5 to 5.5 V	100			ns
(to SCK30, SCK31↑)			150			ns
SI30 hold time (from SCK30, SCK31↑)	tksi1		400			ns
SO30 output delay time from SCK30↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the $\overline{SCK30}$, SO30 output lines.

(b) 3-wire serial I/O mode (SCK30 ... External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK30	tксү2	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK30, high-/low-level	tkh2, tkl2	V _{DD} = 4.5 to 5.5 V	400			ns
width			800			ns
SI30 setup time (to SCK30↑)	tsik2		100			ns
SI30 hold time (from SCK30↑)	tksi2		400			ns
SO30 output delay time from $\overline{\text{SCK30}}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns
SCK30 rise fall time	tr2, tr2	When using external device expansion function			160	ns
		When not using external device expansion function	When using 16-bit timer output function		700	ns
			When not using 16-bit timer output function		1000	ns

Note C is the load capacitance of the SO30 output line.

(c) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V			125000	bps
					78125	bps

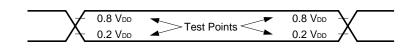
(d) UART mode (External clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
ASCK0 high-/low-level width	t кнз,	V _{DD} = 4.5 to 5.5 V	400			ns
	tкьз		800			ns
Transfer rate		V _{DD} = 4.5 to 5.5 V			39063	bps
					19531	bps
ASCK0 rise, fall time	tr3, tF3	V _{DD} = 4.5 to 5.5 V, when not using external device expansion function			1000	ns
					160	ns

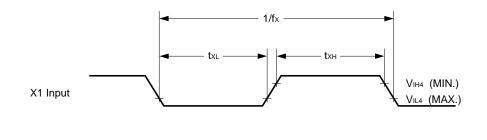
(e) UART mode (Infrared ray data transfer mode)

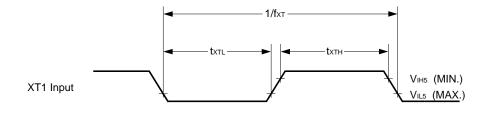
Parameter	Symbol	Test Conditions	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V		115200	bps
Bit rate allowable error		V _{DD} = 4.5 to 5.5 V		±0.87	%
Output pulse width		V _{DD} = 4.5 to 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.5 to 5.5 V	4/fx		μs

Note fbr: specified baud rate

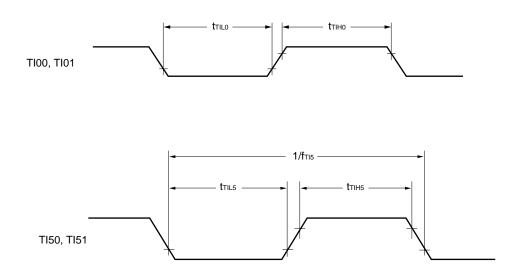

(f) I²C bus Mode

	_		Standar	rd Mode	High-spe	ed Mode	
Parameter		Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL0 clock freq	uency	fclk	0	100	0	400	kHz
Bus free time (between stop a	and start conditions)	tbur	4.7	—	1.3	_	μs
Hold time ^{Note 1}		thd:sta	4.0	_	0.6	_	μs
SCL0 clock low-	level width	tLOW	4.7	_	1.3	—	μs
SCL0 clock high	SCL0 clock high-level width		4.0	—	0.6	—	μs
Start/restart con	dition setup time	tsu:sta	4.7	—	0.6	—	μs
Data hold time	CBUS compatible master	thd:dat	5.0	_	_	_	μs
	I ² C bus		O ^{Note 2}	—	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		tsu:dat	250	—	100 ^{Note 4}	—	ns
SDA0 and SCL	SDA0 and SCL0 signal rise time		_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		t⊧	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sto	4.0	_	0.6	_	μs
Spike pulse width controlled by input filter		tsp		_	0	50	ns
Capacitive load	per each bus line	Cb		400		400	pF

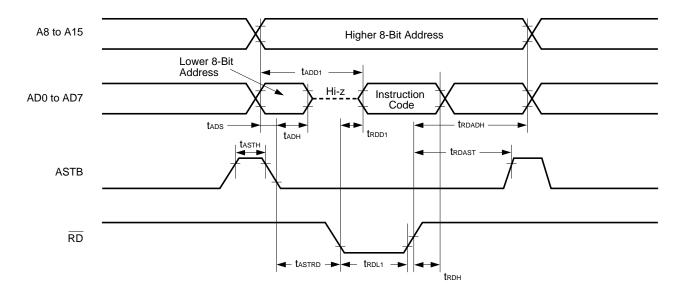

Notes 1. On start condition, the first clock pulse is generated after this period.


- 2. To fulfill undefined area of the SCL0 falling edge, it is necessary for the device to provide internally SDA0 signal (on VIHmin. of SCL0 signal) with at least 300 ns of hold time.
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time (tHD:DAT) needs to be fulfilled.
- **4.** The high-speed mode I²C bus is available in the standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time tsu:DAT $\geq 250~\text{ns}$
 - If the device extends the SCL0 signal low state hold time
 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (tRmax. + tsu:DAT = 1000 + 250 = 1250 ns by standard mode l²C bus specification).
- 5. Cb : total capacitance per one bus line (unit : pF)

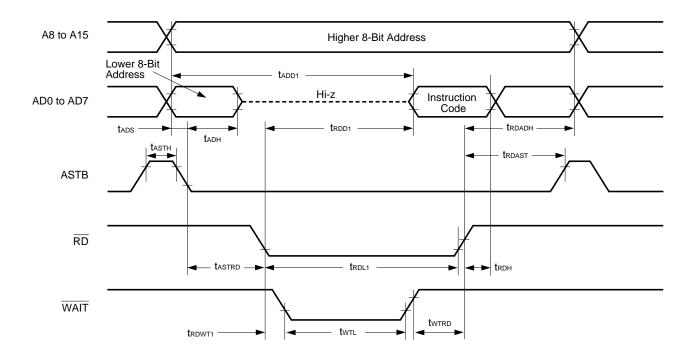
AC Timing Test Point (Excluding X1, XT1 Input)



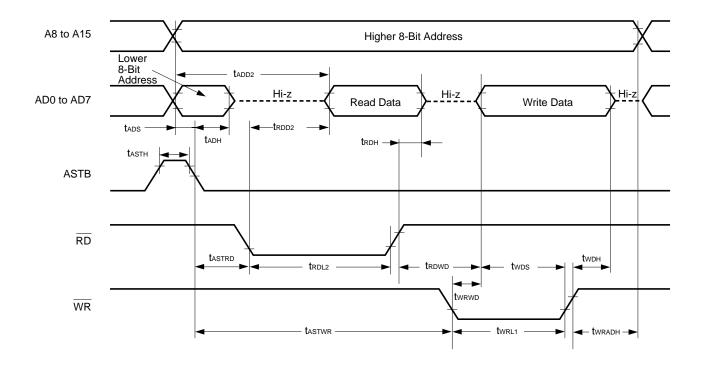
Clock Timing

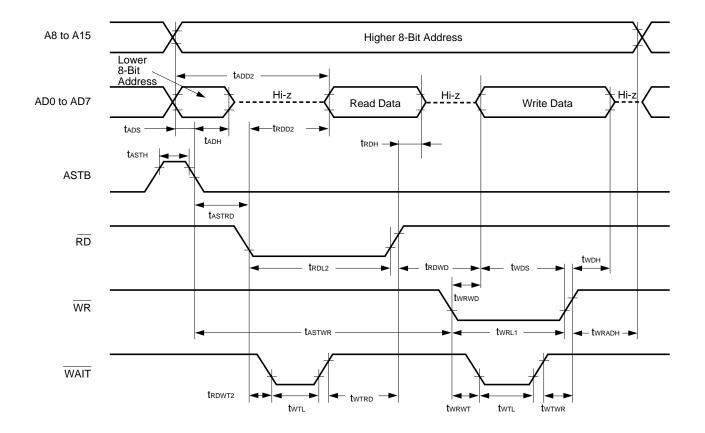


TI Timing

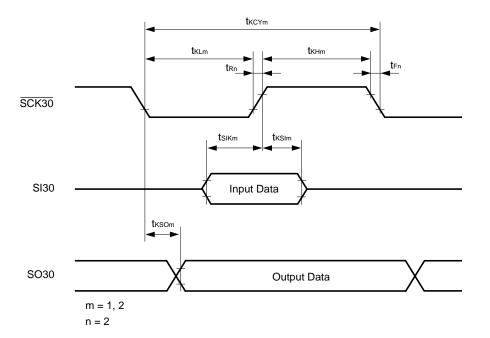


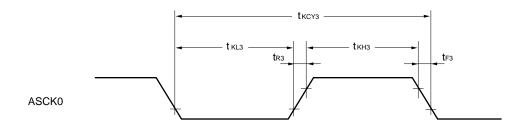
Read/Write Operation


External Fetch (No Wait) :

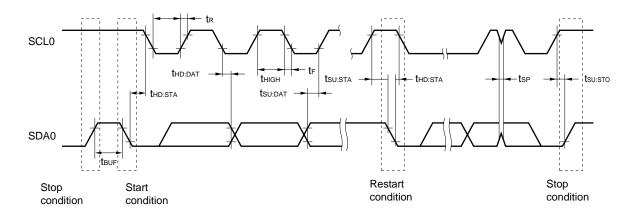

External Fetch (Wait Insertion) :

External Data Access (No Wait) :


External Data Access (Wait Insertion) :


Preliminary Data Sheet

Serial Transfer Timing

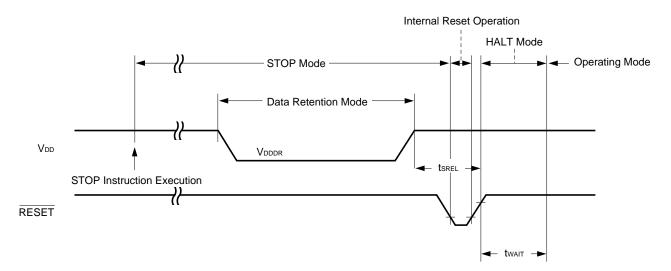

3-wire Serial I/O Mode :

UART Mode (External Clock Input) :

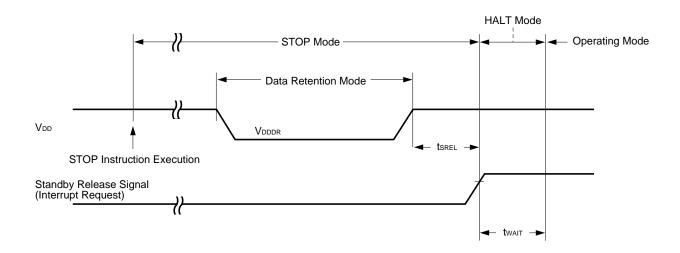
I²C Bus Mode

A/D Converter Characteristics (T_A = -40 to 85° C, V_{DD} = AV_{DD} = AV_{REF} = 2.7 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		$AV_{REF} = 4.5 \text{ to } 5.5 \text{ V}$			±0.4	%
					±0.7	%
Conversion time	Тсолу	$AV_{REF} = 4.5 \text{ to } 5.5 \text{ V}$	14		200	μs
			20		200	μs
Analog input voltage	VIAN		0		AVREF + 0.3	V
Reference voltage	AVREF		2.7		AVdd	V
AVREF resistance	RAIREF		10	20		kΩ

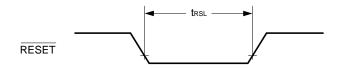

Note Excluding quantization error ($\pm 1/2$ LSB). Shown as a percentage of the full scale value.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

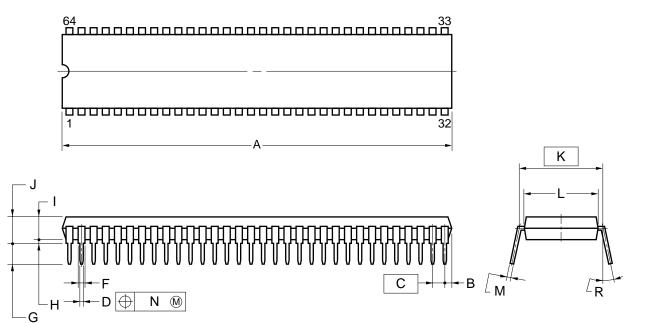

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.6		5.5	V
Data retention power supply current	Idddr	V _{DDDR} = 1.6 V Subsystem clock stops and feed-back resistor disconnected		0.1	10	μA
Release signal set time	tSREL		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt request		Note		ms

Note Selection of 2¹²/fx and 2¹⁴/fx to 2¹⁷/fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

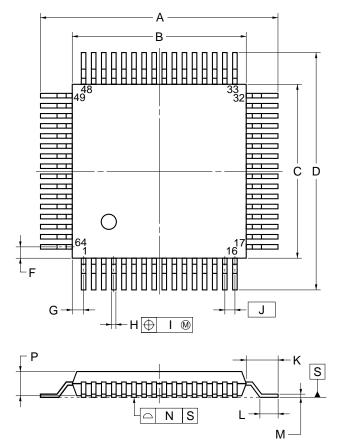
Interrupt Request Input Timing

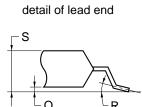


RESET Input Timing

6. PACKAGE DRAWINGS

64-PIN PLASTIC SHRINK DIP (750 mils) (Unit: mm)

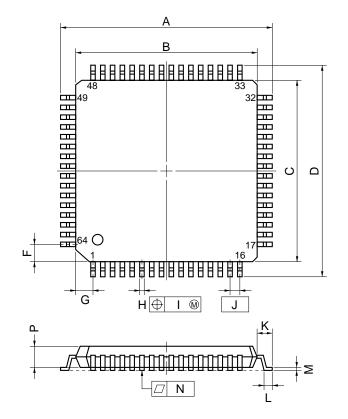



NOTES

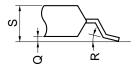
- 1. Controlling dimension— millimeter.
- 2. Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.0 ^{+0.68} -0.20	2.283 ^{+0.028} -0.008
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	$4.05^{+0.26}_{-0.20}$	0.159+0.011
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0±0.2	0.669+0.009
М	$0.25^{+0.10}_{-0.05}$	0.010+0.004 -0.003
Ν	0.17	0.007
R	0 to 15°	0 to 15°
	F	64C-70-750A,C-3

64-PIN PLASTIC QFP (14 x 14) (Unit: mm)



NOTE


- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.17^{+0.08}_{-0.07}$	$0.007^{+0.003}_{-0.004}$
N	0.10	0.004
Р	2.55±0.1	0.100±0.004
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	2.85 MAX.	0.113 MAX.
		P64GC-80-AB8-4

64-PIN PLASTIC LQFP (12 x 12) (Unit: mm)

detail of lead end

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.8±0.4	0.583±0.016
В	12.0±0.2	0.472 ^{+0.009} -0.008
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.4±0.2	0.055 ± 0.008
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-1

***** APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0034Y. Be sure to refer to (5) Cautions on using development tools.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series
CC78K/0	C compiler package common to 78K/0 Series
DF780034	Device file common to μ PD780034 Subseries
CC78K/0-L	C compiler library source file common to 78K/0 Series

(2) Flash Memory Writing Tools

Flashpro II (FL-PR2)	Flash programmer dedicated to on-chip flash memory microcontroller
FA-64CW	Adapter for flash writing
FA-64GC	
FA-64GK ^{Note}	

Note Under development

(3) Debugging Tool

• When using in-circuit emulator IE-78K0-NS

IE-78K0-NS ^{Note}	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C ^{Note}	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)
IE-70000-CD-IF ^{Note}	PC card and interface cable when using notebook PC of PC-9800 series as host machine
IE-70000-PC-IF-C ^{Note}	Interface adapter when using IBM PC/AT [™] or compatible as host machine
IE-780034-NS-EM1 ^{Note}	Emulation board to emulate μ PD780034 Subseries
NP-64CW	Emulation probe for 64-pin plastic shrink DIP (CW type)
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
NP-64GK ^{Note}	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)
TGK-064SBW	Conversion adapter for connecting target system board designed to allow mounting of 64-pin
	plastic LQFP (GK-8A8 type) and NP-64GK.
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
ID78K0-NS ^{Note}	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μ PD780034 Subseries

Note Under development

• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A ^{Note}	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-B	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs)
IE-70000-98-IF-C ^{Note}	
IE-70000-PC-IF-B	Interface adapter when using IBM PC/AT or compatible as host machine
IE-70000-PC-IF-C ^{Note}	
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-780034-NS-EM1 ^{Note}	Emulation board to emulate μ PD780034 Subseries
IE-78K0-R-EX1 ^{Note}	Emulation probe conversion board to use IE-780034-NS-EM1 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EP-78012GK-R	Emulation probe for 64-pin plastic LQFP (GK-8A8 type)
TGK-064SBW	Conversion adapter for connecting target system board and EP-78012GK-R designed to allow
	mounting of 64-pin plastic LQFP (GK-8A8).
EV-9200GC-64	Socket to be mounted on target system board manufactured for 64-pin plastic QFP (GC-AB8 type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file common to μ PD780034 Subseries

Phase-out/Discontinued

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

NEC

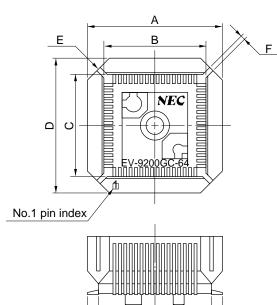
Phase-out/Discontinued

(5) Cautions on using development tools

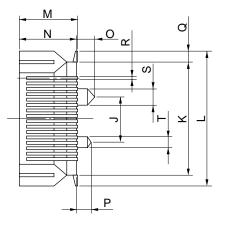
- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780034.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF780034.
- The Flashpro II, FA-64CW, FA-64GC, FA64GK, NP-64CW, NP64GC, and NP-64GK are products made by Naitou Densei Machidaseisakusho (044-822-3813).
- Contact an NEC distributor regarding the purchase of these products.
- The TGK-064SBW is a product made by TOKYO ELETECH CORPORATION. Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Components Division (03-3820-7112)

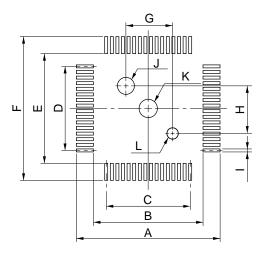
Osaka Electronic Components Division (06-244-6672)


- For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT or compatibles	SPARCstation [™] [SunOS [™]]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K/0	Note	\checkmark
CC78K/0	√Note	\checkmark
ID78K0-NS	\checkmark	-
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	-
RX78K/0	√Note	\checkmark
MX78K0	√Note	\checkmark


Note DOS-based software

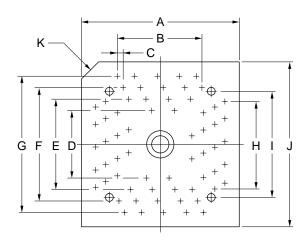
* Conversion Socket Drawing (EV-9200GC-64) and Footprints



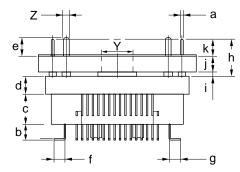
G H I

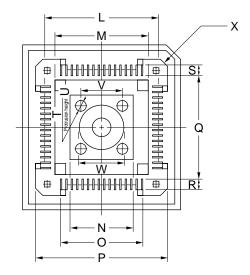
EV-9200GC-64-G				
ITEM	MILLIMETERS	INCHES		
А	18.8	0.74		
В	14.1	0.555		
С	14.1	0.555		
D	18.8	0.74		
Е	4-C 3.0	4-C 0.118		
F	0.8	0.031		
G	6.0	0.236		
н	15.8	0.622		
Ι	18.5	0.728		
J	6.0	0.236		
к	15.8	0.622		
L	18.5	0.728		
М	8.0	0.315		
Ν	7.8	0.307		
0	2.5	0.098		
Р	2.0	0.079		
Q	1.35	0.053		
R	0.35±0.1	$0.014^{+0.004}_{-0.005}$		
S	¢2.3	¢0.091		
Т	Ø1.5	¢0.059		

EV-9200GC-64-P1E


ITEM	MILLIMETERS	INCHES
А	19.5	0.768
В	14.8	0.583
С	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 {=} 0.472^{+0.003}_{-0.002}$
D	$0.8\pm0.02 \times 15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 {=} 0.472^{+0.003}_{-0.002}$
E	14.8	0.583
F	19.5	0.768
G	6.00±0.08	$0.236^{+0.004}_{-0.003}$
Н	6.00±0.08	$0.236^{+0.004}_{-0.003}$
I	0.5±0.02	$0.197\substack{+0.001\\-0.002}$
J	¢2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$
К	φ2.2±0.1	$\phi 0.087^{+0.004}_{-0.005}$
L	¢1.57±0.03	Ø0.062 ^{+0.001} -0.002

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGYMANUAL" (C10535E).


NEC


Phase-out/Discontinued

* Conversion Adapter Drawing (TGK-064SBW)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
А	18.4	0.724	а	<i>ф</i> 0.3	<i>ф</i> 0.012
В	0.65x15=9.75	0.026x0.591=0.384	b	1.85	0.073
С	0.65	0.026	с	3.5	0.138
D	7.75	0.305	d	2.0	0.079
Е	10.15	0.400	е	3.9	0.154
F	12.55	0.494	f	1.325	0.052
G	14.95	0.589	g	1.325	0.052
Н	0.65x15=9.75	0.026x0.591=0.384	h	5.9	0.232
I	11.85	0.467	i	0.8	0.031
J	18.4	0.724	j	2.4	0.094
к	C 2.0	C 0.079	k	2.7	0.106
L	12.45	0.490			TGK-064SBW-G0E
М	10.25	0.404			
N	7.7	0.303			
0	10.02	0.394			
Р	14.92	0.587			
Q	11.1	0.437			
R	1.45	0.057			
S	1.45	0.057			
т	4- <i>ф</i> 1.3	4- <i>ф</i> 0.051			
U	1.8	0.071			
V	5.0	0.197			
W	<i>\$</i> 5.3	<i>ф</i> 0.209			
Х	4-C 1.0	4-C 0.039			
Y	<i>\$</i> 3.55	<i>ф</i> 0.140			
Z	<i>ф</i> 0.9	<i>ф</i> 0.035			

Note: Product made by TOKYO ELETECH Corporation.

*

Phase-out/Discontinued

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
μPD780024, 780024Y, 780034, 780034Y Subseries User's Manual	U12022E	U12022J
μPD780031Y, 780032Y, 780033Y, 780034Y Data Sheet	U12166E	U12166J
µPD78F0034Y Data Sheet	This document	U11994J
78K/0 Series User's Manual-Instruction	U12326E	U12326J
78K/0 Series Instruction Table		U10903J
78K/0 Series Instruction Set	_	U10904J
µPD780034Y Subseries Special Function Register Table	—	To be prepared

Development Tool Documents (User's Manual)

Document Name			Document No. (Japanese)
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly Language	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-1208	U13034J
CC78K Series Library Source File	1	U12322E	U12322J
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-780034-NS-EM1		To be prepared	To be prepared
EP-78240		U10332E	EEU-986
EP-78012GK-R		EEU-1538	EEU-5012
SM78K0 System Simulator-Windows based	Reference	U10181E	U10181J
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E	U10092J
ID78K0-NS Integrated Debugger	Reference	To be prepared	U12900J
ID78K0 Integrated Debugger — EWS based	Reference	_	U11151J
ID78K0 Integrated Debugger — PC based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger — Windows based	Guide	U11649E	U11649J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

Embedded Software Documents (User's Manual)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real-time OS	Basics	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Basics	U12257E	U12257J

Other Documents

Document Name	Document No. (English)	Document No. (Japanese)
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	—
Microcomputer Product Series Guide	_	U11416J

Caution The above related documents are subject to change without notice. Be sure to read the latest documents before designing.

[MEMO]

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 **NEC Electronics Hong Kong Ltd.** Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation. Windows is a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. PC/AT is a trademark of International Business Machines Corporation. HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CY8C20524-12PVXIT CY8C28433-24PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2 MB95F478KPMC2-G-SNE2 MB95F562KPF-G-SNE2 MB95F564KPF-G-SNE2 MB95F634KPMC-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 MC908JK1ECDWER MC9S08PA32AVLD MC9S08PT60AVLD R5F1076CMSPV0 R5F5631ECDFBV0 C8051F389-B-GQ C8051F392-A-GMR ISD-ES1600_USB_PROG 901015X SC705C8AE0VFBE STM8TL53G4U6 PIC16F877-04/P-B R5F10Y17ASP#30 CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2 MB95F564KPFT-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F636KPMC-G-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2 MC908QY8CDWER MC9S08PT16AVLD MC9S08PT32AVLH MC9S08PT60AVLC MC9S08PT60AVLH C8051F500-IQR LC87F0G08AUJA-AH CP8361BT STM8S207C6T3 CG8421AF