00 0416 # 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz ### Typical Applications The HMC424ALH5 is ideal for: - Telecom Infrastructure - Military Radio, Radar & ECM - Space Systems - Test Instrumentation #### **Features** 0.5 dB LSB Steps to 31.5 dB Single Control Line Per Bit ± 0.3 dB Typical Bit Error Hermetic SMT Package, 25mm² Screening to MIL-PRF-38535 (Class B or S) Available ### **Functional Diagram** #### **General Description** The HMC424ALH5 is a broadband 6-bit GaAs MMIC digital attenuator housed in a hermetic SMT leadless package. Covering DC to 13 GHz, the insertion loss is less than 3.5 dB typical. The attenuator bit values are 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent at ±0.5 dB typical step error with an IIP3 of +34 dBm. Six control voltage inputs, toggled between 0 and -5V, are used to select each attenuation state. A single Vee bias of -5V allows operation at frequencies down to DC. The HMC424ALH5 is compatible with standard and lead free surface mount manufacturing techniques and is suitable for high reliability military, industrial and space applications. # Electrical Specifications, $T_A = +25^{\circ}$ C, With Vee = -5V & VCTL= 0/-5V | Parameter | | Frequency (GHz) | Min. | Тур. | Max. | Units | |---|---|---|--|--------------------------|--------------------------|----------------| | Insertion Loss | | DC - 4 GHz
4.0 - 8.0 GHz
8.0 - 12.0 GHz
12.0GHz - 13.0 GHz | | 2.7
3.3
4.2
4.7 | 3.2
3.8
4.7
5.2 | dB
dB
dB | | Attenuation Range | | DC - 13.0 GHz | | 31.5 | | dB | | Return Loss (RF1 & RF2, All Atten. States) | | DC - 13.0 GHz | | 12 | | dB | | Attenuation Accuracy: (Referenced to Insertion Loss) | 0.5 - 16.5 dB States
17 - 31.5 dB States | DC - 13.0 GHz
DC - 13.0 GHz | ± 0.4 + 4% of Atten. Setting Max
± 0.5 + 5% of Atten. Setting Max | | dB
dB | | | Input Power for 0.1 dB Compression | | 1.0 - 13.0 GHz | | 27 | | dBm | | Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone) | REF State
All Other States | 1.0 - 13.0 GHz | | 40
34 | | dBm
dBm | | Switching Characteristics | | DC - 13.0 GHz | | | | | | tRISE, tFALL (10/90% RF)
tON/tOFF (50% CTL to 10/90% RF) | | | | 30
55 | | ns
ns | # 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz #### **Insertion Loss** #### **Normalized Attenuation** (Only Major States are Shown) #### Bit Error vs. Frequency (Only Major States are Shown) #### Return Loss RF1, RF2 (Only Major States are Shown) #### Bit Error vs. Attenuation State #### Relative Phase vs. Frequency (Only Major States are Shown) V00 0416 # 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz ## Step Error vs. Frequency (Major States) #### **Truth Table** | Control Voltage Input | | | | | Attenuation | | |-----------------------|------------|------------|------------|------------|--------------|--------------------| | V1
16 dB | V2
8 dB | V3
4 dB | V4
2 dB | V5
1 dB | V6
0.5 dB | State
RF1 - RF2 | | Low | Low | Low | Low | Low | Low | Reference
I.L. | | Low | Low | Low | Low | Low | High | 0.5 dB | | Low | Low | Low | Low | High | Low | 1 dB | | Low | Low | Low | High | Low | Low | 2 dB | | Low | Low | High | Low | Low | Low | 4 dB | | Low | High | Low | Low | Low | Low | 8 dB | | High | Low | Low | Low | Low | Low | 16 dB | | High | High | High | High | High | High | 31.5 dB | Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected. ## Bias Voltage & Current | Vee Range= -5 Vdc ± 10% | | | |-------------------------|--------------------|--------------------| | Vee
(VDC) | lee (Typ.)
(mA) | lee (Max.)
(mA) | | -3.0 | 2.2 | 5 | | -5.0 | 2.3 | 5 | ### **Control Voltage** | State | Bias Condition | |-------|-------------------------------| | Low | 0 to -3V @ 35 μA Typ. | | High | Vee to Vee +0.8V @ <1 μA Typ. | v00.0416 # 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz #### **Absolute Maximum Ratings** | Control Voltage (V1 to V6) | Vee - 0.5 Vdc | |---|----------------------| | Bias Voltage (Vee) | -7 Vdc | | Channel Temperature | 150 °C | | Thermal Resistance (T= 85 °C) Pin = +23 dBm, @ max. atten. Pin = +23dBm, @ 4dB atten. | 100 °C/W
374 °C/W | | Continuous Pdiss (T= 85 °C) | 0.174 W | | Storage Temperature | -65 to + 150 °C | | Operating Temperature | -40 to +85 °C | | RF Input Power (0.5 - 13 GHz) | +25 dBm | | ESD Sensitivity (HBM) | Class 1A | ### **Outline Drawing** #### NOTES: - 1. PACKAGE BODY MATERIAL: CERAMIC & KOVAR - 2. LEAD AND GROUND PADDLE PLATING: GOLD 40 80 MICROINCHES. - 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]. - 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE - 5. PAD BURR LENGTH 0.15mm MAX. PAD BURR HEIGHT 0.25mm MAX. - 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND. v00 0416 # 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz ### **Pin Description** | Pad Number | Function | Description | Interface Schematic | |------------|----------|---|---------------------| | 1, 9 | RF1, RF2 | This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V. | | | 2 - 7 | V6 - V1 | See truth table and control voltage table. | 100K Vee | | 8, 10, 12 | GND | Package base must also be connected to RF ground | ⊖ GND
= | | 11 | Vee | Supply Voltage -5V ± 10% | | ### Suggested Driver Circuit (One Circuit Required Per Bit Control Input) Simple driver using inexpensive standard logic ICs provides fast switching using minimum DC current. * Recommended value to suppress unwanted RF signals at V1 - V6 control lines. v00.0416 # 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 13 GHz #### **Evaluation PCB** #### List of Materials for Evaluation PCB EV1HMC424ALH5 [1] | Item | Description | |---------|---------------------------------| | J1 - J2 | PCB Mount SMA SRI Connector | | J3 | 8 Pin DC Connector .1" Thruhole | | C1 | 0.01 μF Capacitor, 0603 Pkg. | | U1 | HMC424ALH5 Digital Attenuator | | PCB [2] | 110853 Evaluation PCB | ^[1] Reference this number when ordering complete evaluation PCB [2] Circuit Board Material: Rogers 4350 The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for RF Development Tools category: Click to view products by Analog Devices manufacturer: Other Similar products are found below: MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVAL ADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z F0440EVBI F1241EVBI F1423EVB-DI F1423EVB-SI F1701EVBI F1751EVBI F2250EVBI MICRF219A-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223-HMC789ST89E ADL5363 EVALZ ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436-HMC1010LP4E DEMOBOARD-U2790B ATR2406-PNQW EKIT01-HMC1197LP7F Si4705-D60-EVB Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331-08-EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL_PAN4555ETU EVAL01-HMC1041LC4