

# **OLED DISPLAY MODULE**

## **Application Notes**







## TABLE OF CONTENTS

| 1 | EV  | К SCHEMATIC                               |   |
|---|-----|-------------------------------------------|---|
| 2 | TI  | MING CHARACTERISTICS                      | 6 |
| 3 | CO  | ONNECTION BETWEEN OLED AND EVK            |   |
| 4 | НС  | OW TO USE THE DD-160128FC-1A/2A           |   |
|   | 4.1 | Recommended Initial code for 80 interface |   |

| Product No. | DD-160128FC-1A/2A | REV. B | Paga | 2/17 |
|-------------|-------------------|--------|------|------|
| Floudet No. |                   |        | Fage | 2/1/ |



## **REVISION RECORD**

| Rev. | Date      | Page | Chapt. | Comment      | ECR no. |
|------|-----------|------|--------|--------------|---------|
| А    | 30 Sep 06 |      |        | First Issue  |         |
| В    | 13 Jan 09 |      |        | Second Issue |         |
|      |           |      |        |              |         |
|      |           |      |        |              |         |
|      |           |      |        |              |         |
|      |           |      |        |              |         |
|      |           |      |        |              |         |
|      |           |      |        |              |         |

| Product No. | DD-160128FC-1A/2A | REV. B | Daga | 2/17 |  |
|-------------|-------------------|--------|------|------|--|
| Product No. |                   |        | Page | 5/1/ |  |



## **1 EVK Schematic**





Symbol Definition

D17-D9 : These pins are 9-bit bi-directional data bus to be connected to the MCU's data bus.

**D17-D10**: These are for command and data inputs (8bit parallel interface).

**CSB** : These pins are CSB pins for master and slave driver IC. This pin is the chip select input. The chip is enabled for MCU communication only when CSB is pulled low.

- CPU: Selects the CPU type. Low: 80-series CPU High: 68-Series CPU
- **PS :** Selects parallel/Serial interface type. Low: serial High: parallel.
- **RDB**: For an 80-system bus interface, read strobe signal(active low). For a 68-system bus interface, bus enable strobe (active high). When using SPI, fix it to VDD or VSS level.

WRB : For an 80-system bus interface, write strobe signal (active low). For a 68-system bus interface, read/write select. Low: Write High: Read. When using SPI, fix it to VDD or VSS level.

**RESB**: Reset SEPS525F(active low).

**VCC** : External Column Driving Power Supply.

- **VDD** : Logic power supply.
- **VSS** : Power supply ground.

HV: External Column Driving Power Supply.

LV : Logic power supply.

**GND** : Power supply ground.

**Note1:** Please ground the unused data pins

**Note2:** If you do not use RGB Interface, please ground VSYNC, HSYNC, Enable, DOTCLK and floating VSYNCO.

Note3: If you do not use VDDIO, please connect it to LV (VDD).

| riduct No. rage 3717 | Product No. | DD-160128FC-1A/2A | REV. B | Daga | 5/17 |
|----------------------|-------------|-------------------|--------|------|------|
|                      | Product No. |                   |        | Fage | 5/1/ |



## 2 Timing characteristics

80-Series MPU parallel Interface (write timing)

|                          |        |           |     | (VI | DD = 2.8V | V, Ta = 25°C) |
|--------------------------|--------|-----------|-----|-----|-----------|---------------|
| ITEM                     | SYMBOL | CONDITION | MIN | MAX | UNIT      | PORT          |
| Address hold<br>timing   | tAH8   |           | 5   |     | ns        | CSB           |
| Address setup<br>timing  | tAS8   | -         | 5   | _   | ns        | RS            |
| System cycle<br>timing   | tCYC8  |           | 100 |     | ns        |               |
| Write "L" pulse<br>width | tWRLW8 | -         | 45  | -   | ns        | WRB           |
| Write "H" pulse<br>width | tWRHW8 |           | 45  |     | ns        |               |
| Data setup timing        | tDS8   |           | 30  |     | ns        | DP[17:0]      |
| Data hold timing         | tDH8   | -         | 10  | _   | ns        | [1/.0]        |

All the timing reference is 10% and 90% of VDD

 Table 1 80-Series MPU Parallel Interface Timing Characteristics (Write)

 (Write Timming)



## Figure 1 80-Series MPU parallel Interface Timing Diagram (Write)

| Product No. | DD-160128FC-1A/2A | REV. B | ] | Dago | 6/17 |
|-------------|-------------------|--------|---|------|------|
| Floduct No. |                   |        |   | rage | 0/1/ |



|                         |        |             |     | (VI | DD = 2.8V | $V_{,} Ta = 25^{\circ}C_{,}$ |
|-------------------------|--------|-------------|-----|-----|-----------|------------------------------|
| ITEM                    | SYMBOL | CONDITION   | MIN | MAX | UNIT      | PORT                         |
| Address hold<br>timing  | tAH8   |             | 5   |     | ns        | CSB                          |
| Address setup timing    | tAS8   | -           | 5   | -   | ns        | RS                           |
| System cycle<br>timing  | tCYC8  |             | 200 |     | ns        |                              |
| Read "L" pulse<br>width | tWRLW8 | -           | 90  | -   | ns        | RDB                          |
| Read "H" pulse<br>width | tWRHW8 |             | 90  |     | ns        |                              |
| Data setup timing       | tDS8   | CI = 15  pE | -   | 60  | ns        | DD[17:0]                     |
| Data hold timing        | tDH8   | CL = 15  pF | 0   | 60  | ns        | [0./1]סט                     |

#### 80-Series MPU parallel Interface (Read timing)

All the timing reference is 10% and 90% of VDD

#### Table 2 80-Series MPU Parallel Interface Timing Characteristics (Read)





### Figure 2 80-Series MPU parallel Interface Timing Diagram (Read)

| Product No. | DD-160128FC-1A/2A | REV. B | Dago | 7/17 |
|-------------|-------------------|--------|------|------|
| Floduct No. |                   |        | rage | //1/ |



|                          |        |           |     | (VDD - | = 2.8V, Ta | $a = 25^{\circ}C)$ |
|--------------------------|--------|-----------|-----|--------|------------|--------------------|
| ITEM                     | SYMBOL | CONDITION | MIN | MAX    | UNIT       | PORT               |
| Address hold timing      | tAH8   |           | 5   |        | ns         | CSB                |
| Address setup timing     | tAS8   | _         | 5   | -      | ns         | RS                 |
| System cycle<br>timing   | tCYC8  |           | 100 |        | ns         |                    |
| Write "L" pulse<br>width | tWRLW8 | -         | 45  | -      | ns         | Е                  |
| Write "H" pulse<br>width | tWRHW8 |           | 45  |        | ns         |                    |
| Data setup timing        | tDS8   |           | 40  |        | ns         | DD[17:0]           |
| Data hold timing         | tDH8   |           | 10  | -      | ns         | [1/.0]             |

6800-Series MPU parallel Interface (write timing)

All the timing reference is 10% and 90% of VDD

## Table 3 6800-Series MPU Parallel Interface Timing Characteristics (Write)



### Figure 3 6800-Series MPU parallel Interface Timing Diagram (Write)

| Product No. | DD-160128FC-1A/2A | REV. B | Daga | 8/17 |
|-------------|-------------------|--------|------|------|
| Floduct No. |                   |        | rage | 0/1/ |



|                         |        |             |     | (VI  | DD = 2.8V | V, Ta = 25°C |
|-------------------------|--------|-------------|-----|------|-----------|--------------|
| ITEM                    | SYMBOL | CONDITION   | MIN | MAX  | UNIT      | PORT         |
| Address hold<br>timing  | tAH8   |             | 10  |      | ns        | CSB          |
| Address setup timing    | tAS8   |             | 10  | -    | ns        | RS           |
| System cycle<br>timing  | tCYC8  | -           | 200 |      | ns        |              |
| Read "L" pulse<br>width | tWRLW8 |             | -   | 90 - | -         | ns           |
| Read "H" pulse<br>width | tWRHW8 |             | 90  |      | ns        |              |
| Data setup timing       | tDS8   | CI = 15  pE | 0   | 70   | ns        | DD[17:0]     |
| Data hold timing        | tDH8   | CL – 13 pr  | 0   | 70   | ns        | [0./1]סט     |

#### 68-Series MPU parallel Interface (Read timing)

All the timing reference is 10% and 90% of VDD

## Table 4 80-Series MPU Parallel Interface Timing Characteristics (Read)



Figure 4 6800-Series MPU parallel Interface Timing Diagram (Read)

| Product No. | DD-160128FC-1A/2A | REV. B | Dago | 0/17 |
|-------------|-------------------|--------|------|------|
| Floudet No. |                   |        | rage | 9/1/ |



### **SPI Interface**

|                        |        |           |     | (VI | DD = 2.8V | $T_{\rm c}$ , Ta = 25°C |
|------------------------|--------|-----------|-----|-----|-----------|-------------------------|
| ITEM                   | SYMBOL | CONDITION | MIN | MAX | UNIT      | PORT                    |
| Serial clock cycle     | tCYCS  |           | 60  |     | ns        |                         |
| SCL "H" pulse<br>width | tSHW   | -         | 25  | -   | ns        | SCL                     |
| SCL "L" pulse<br>width | tSLW   |           | 25  |     | ns        |                         |
| Data setup timing      | tDSS   |           | 25  |     | ns        |                         |
| Data hold timing       | tDHS   | -         | 25  | -   | ns        | SDI                     |
| CSB SCL timing         | tCSS   |           | 25  |     | ns        | CSD                     |
| CSB hold timing        | tCSH   | -         | 23  | -   | ns        | COD                     |

All the timing reference is 10% and 90% of VDD

## **Table 5 SPI Interface Timing Characteristics**



Figure 5 SPI Interface Timing Characteristics

| riduct No. rage 10/1/ | Product No. | DD-160128FC-1A/2A | REV. B | Daga | 10/17    |
|-----------------------|-------------|-------------------|--------|------|----------|
|                       | Product No. |                   |        | Page | 10 / 1 / |





## 3 Connection Between OLED and EVK

Figure 6 EVK PCB and DD-160128FC-1A/2A Module

| Product No. | DD-160128FC-1A/2A | REV. B | Daga | 11/17 |
|-------------|-------------------|--------|------|-------|
| Product No. |                   |        | rage | 11/1/ |





### Figure 7 DD-160128FC-1A/2A and EVK assembled (Top view)

The SEPS525F is a COF type package, which means that the connect pads are on the top of the display connector. When the EVK and display are assembled, finally push the locking pad to hold the display in place, see Figure 6 and Figure 7.

User can use wires to connect the EVK with the system. The example is shown below in figure 8;

| Product No. | DD-160128FC-1A/2A | REV. B | Daga | 12/17 |
|-------------|-------------------|--------|------|-------|
| Ploduct No. |                   |        | rage | 12/1/ |





Figure 8 control MCU (not supplied) connected with EVK

Note 1 : It is the external most positive voltage supply. In this sample it is connected to power supply.

### 6. Power down and Power up Sequence

To protect OLED panel and to extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. Such that panel has enough time to charge up or discharge before/after operation.



![](_page_13_Picture_0.jpeg)

- 1. Power up VDD and VDDIO
- 2. Send Display off command
- 3. Driver IC Initial Setting
- 4. Clear Screen
- 5. Power up Vcc
- 6. Delay 100ms
- (when VDD is stable)
- 7. Send Display on command

### **Power down Sequence:**

![](_page_13_Figure_10.jpeg)

- 1. Send Display off command
- 2. Power down Vcc
- 3. Delay 100ms
- 4. Power down VDD and VDDIO

| Product No. | DD-160128FC-1A/2A | REV. B | Daga | 14/17 |
|-------------|-------------------|--------|------|-------|
| Product No. |                   |        | Page | 14/1/ |

![](_page_14_Picture_0.jpeg)

## 4 How to use the DD-160128FC-1A/2A

![](_page_14_Figure_2.jpeg)

## 4.1 Recommended Initial code for 80 interface

write\_c(0x06); // Display off
write\_d(0x00);
write\_c(0x02); // OSC\_CTL
write\_d(0x01);
write\_c(0x03); // CLOC\_DIV
write\_d(0x30); // 115Hz
write\_c(0x04); // REDUCE\_CURRENT
write\_d(0x00);
write\_c(0x80); // IREF

| Product No. | DD-160128FC-1A/2A | REV. B | Dago | 15 / 17 |
|-------------|-------------------|--------|------|---------|
| FIOUUCI NO. |                   |        | rage | 13/1/   |

![](_page_15_Picture_0.jpeg)

write\_d(0x00); write c(0x08); // PRECHARGE TIME R write d(0x01); write\_c(0x09); // PRECHARGE\_TIME\_G write d(0x01); write\_c(0x0a); // PRECHARGE\_TIME\_B write d(0x02); write\_c(0x0b); // PRECHARGE\_CURRENT\_R write d(0x0C); write\_c(0x0C); // PRECHARGE\_CURRENT\_G write d(0x19); write c(0x0d); // PRECHARGE CURRENT B write d(0x15); write c(0x10); // DRIVING CURRENT R write d(0x32); write\_c(0x11); // DRIVING\_CURRENT\_G write\_d(0x27); write\_c(0x12); // DRIVING\_CURRENT\_B write\_d(0x2B); write\_c(0x13); // DISPLAY\_MODE\_SET write\_d(0x00); write\_c(0x14); // RGB\_IF write d(0x21); write\_c(0x15); // RGB\_POL write d(0x00); write\_c(0x16); // MEMORY\_WRITE\_MODE write\_d(0x76); write\_c(0x17); // MX1\_ADDR write\_d(0x00); write\_c(0x18); // MX2\_ADDR write\_d(0x9f); write\_c(0x19); // MY1\_ADDR write d(0x00); write\_c(0x1a); // MY2\_ADDR write d(0x7f); write\_c(0x20); // MEMORY\_ACCESSPOINTER X write d(0x00); write\_c(0x21); // MEMORY\_ACCESSPOINTER X write\_d(0x00); write c(0x28); // DUTY write d(0x7f); write c(0x29); // DISPLAY START LINE write d(0x00); write c(0x2e); // D1 DDRAM FAC write d(0x00); write\_c(0x2f); // D1\_DDRAM\_FAR write d(0x00); write\_c(0x31); // D2\_DDRAM\_FAC write\_d(0x00); write\_c(0x32); // D2\_DDRAM\_FAR write\_d(0x00); write\_c(0x33); // SCR1\_FX1 write\_d(0x00); write\_c(0x34); // SCR1\_FX2 write\_d(0x9f); write\_c(0x35); // SCR1\_FY1 write\_d(0x00); write\_c(0x36); // SCR1\_FY1

Product No.

| DD-160128FC-1A/2A | REV. B |   | Daga | 16/17 |
|-------------------|--------|---|------|-------|
|                   |        |   | Page | 10/1/ |
|                   |        | - |      |       |

![](_page_16_Picture_0.jpeg)

write\_d(0x7f); write\_c(0x06); // Display on write\_d(0x01);

#### Sub Function for 80 Interface

```
void write_c(unsigned char out_command)
RS=0;
CS=0;
WR=0;
P1=out_command;
WR=1;
CS=1;
RS=1;
}
void write_d(unsigned char out_data)
ł
RS=1;
CS=0;
WR=0;
P1=out_data;
WR=1;
CS=1;
}
void White_pattern()
{
write c(0x20); // MEMORY ACCESSPOINTER X
write d(0x00);
write c(0x21); // MEMORY ACCESSPOINTER X
write d(0x00);
write c(0x22);
 for(i=0;i<128;i++)
 {
   for(j=0;j<160;j++)
   {
   write_d(0xfc);
   write_d(0xfc);
   write_d(0xfc);
   }
}
}
```

**Recommended Initial Code and Sub Function** 

Note : 1.For 80 series CPU interface.

2. For 8bits Ttiple Transfer 262K support.

| Product No. | DD-160128FC-1A/2A | REV. B | Daga | 17/17 |
|-------------|-------------------|--------|------|-------|
| Product No. |                   |        | Page | 1//1/ |

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for densitron manufacturer:

Other Similar products are found below :

DMT024QVNUNT0-2C DMT028QVNTNT0S-1A DMT028QVHXCMI-1A DMT024QVNUCMI-2A LMR4048BG2C16HNG/5V