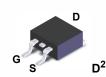


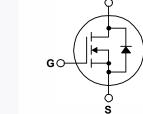
October 2013

FCB20N60

N-Channel SuperFET[®] MOSFET 600 V, 20 A, 190 mΩ

Features


- 650 V @T_{.1} = 150 °C
- Typ. $R_{DS(on)}$ = 150 m Ω
- Ultra Low Gate Charge (Typ. Q_q = 75 nC)
- Low Effective Output Capacitance (Typ. C_{oss}.eff = 165 pF)
- 100% Avalanche Tested
- · RoHS Compliant


Application

- Lighting
- · AC-DC Power Supply
- Solar Inverter

Description

SuperFET® MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol		Parameter		FCB20N60TM	Unit
V _{DSS}	Drain to Source Voltage	in to Source Voltage		600	V
	Drain Current	- Continuous (T _C = 25°C)		20	۸
ID	Drain Current	- Continuous (T _C = 100°C)		12.5	Α
I _{DM}	Drain Current	- Pulsed	(Note 1)	60.0	Α
V _{GSS}	Gate to Source Voltage			±30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		(Note 2)	690	mJ
I _{AR}	Avalanche Current		(Note 1)	20	Α
E _{AR}	Repetitive Avalanche Energy ((Note 1)	20.8	mJ
dv/dt	Peak Diode Recovery dv/	dt	(Note 3)	4.5	V/ns
Б	Dawar Dissipation	(T _C = 25°C)		208	W
P_{D}	Power Dissipation	- Derate above 25°C		1.67	W/°C
T _J , T _{STG}	Operating and Storage Te	emperature Range		-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FCB20N60TM	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	0.6	
В	Thermal Resistance, Junction to Ambient (minimum pad of 2 oz copper), Max.	62.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (1 in ² pad of 2 oz copper), Max.	40	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCB20N60	FCB20N60TM	D ² -PAK	330mm	24m	800

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
D\/	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V,I}_{D} = 250 \mu\text{A}, \text{ T}_{C} = 25^{\circ}\text{C}$	600	-	-	V
BV _{DSS} Drain to Source Breakdown Vo	Drain to Source Breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_C = 150^{\circ}\text{C}$	-	650	-	V
ΔBV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.6	-	V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 20 A	-	700	-	V
	Zoro Cato Voltago Proin Current	V _{DS} = 600 V, V _{GS} = 0 V	-	-	1	
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	10	μА
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA

On Characteristics

$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	-	0.15	0.19	Ω
g _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 10 A	-	17	-	S

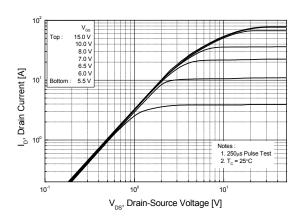
Dynamic Characteristics

C _{iss}	Input Capacitance	V 05.V V 0.V	-\	2370	3080	pF
C _{oss}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V f = 1.0 MHz		1280	1665	pF
C _{rss}	Reverse Transfer Capacitance			95	-	pF
C _{oss}	Output Capacitance	$V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	-	65	85	pF
C _{oss} eff.	Effective Output Capacitance	$V_{DS} = 0 \text{ V to } 400 \text{ V}, V_{GS} = 0 \text{ V}$	-	165	-	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	62	135	ns
t _r	Turn-On Rise Time	$V_{DD} = 300 \text{ V}, I_{D} = 20 \text{ A}$ $R_{G} = 25 \Omega$		140	290	ns
t _{d(off)}	Turn-Off Delay Time			230	470	ns
t _f	Turn-Off Fall Time	(Note 4	-	65	140	ns
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 480 V, I _D = 20 A,	/-	75	98	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	-	13.5	18	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note 4	_	36	-	nC

Drain-Source Diode Characteristics


I _S	Maximum Continuous Drain to Source Diode Forward Current			-	20	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	60	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 20 A	-	-	1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 20 A	-	530	//-	ns
Q _{rr}	Reverse Recovery Charge	$V_{GS} = 0 \text{ V, } I_{SD} = 20 \text{ A}$ $dI_F/dt = 100 \text{ A}/\mu\text{s}$	-	10.5	-	μС

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} = 10 A, V_{DD} = 50 V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 3. I $_{SD} \leq~20$ A, di/dt ≤ 200 A/µs, V $_{DD} \leq BV _{DSS}$, Starting T $_{J}$ = $25^{\circ}C$
- 4. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

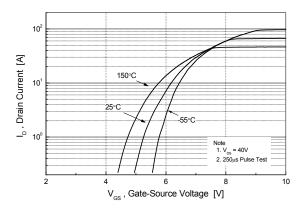


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

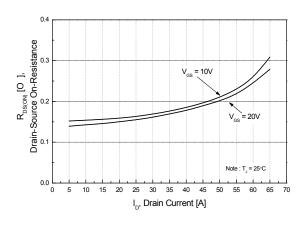


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

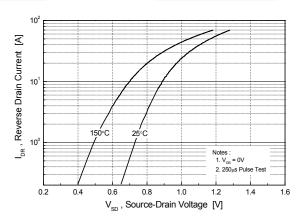
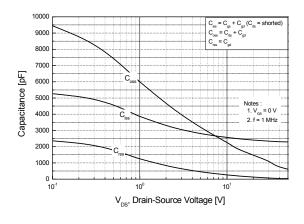
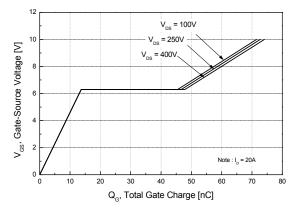




Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

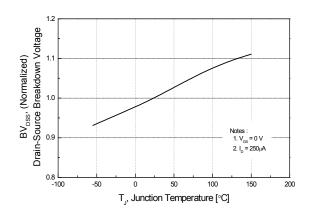


Figure 8. On-Resistance Variation vs. Temperature

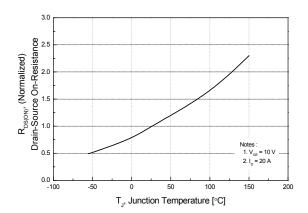


Figure 9. Maximum Safe Operating Area

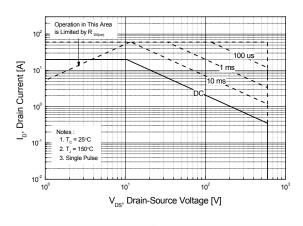


Figure 10. Maximum Drain Current vs. Case Temperature

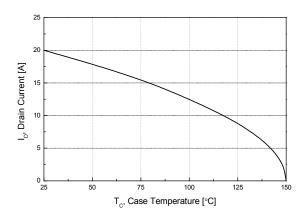


Figure 11. Transient Thermal Response Curve

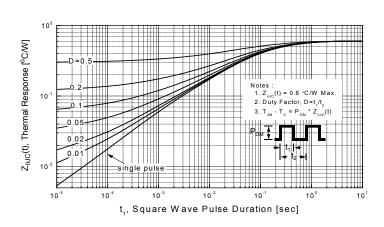


Figure 12. Gate Charge Test Circuit & Waveform

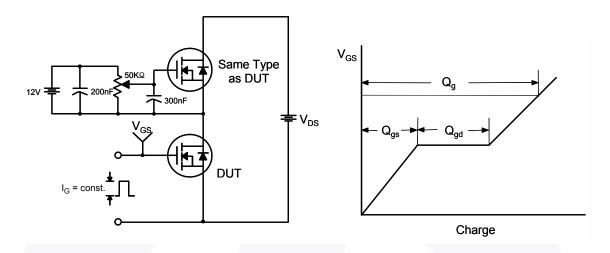


Figure 13. Resistive Switching Test Circuit & Waveforms

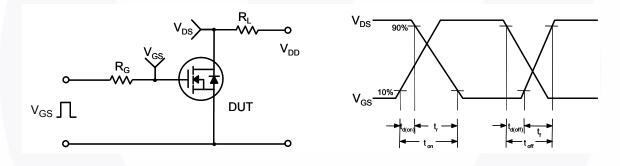
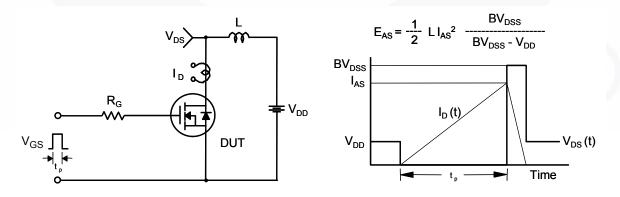



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

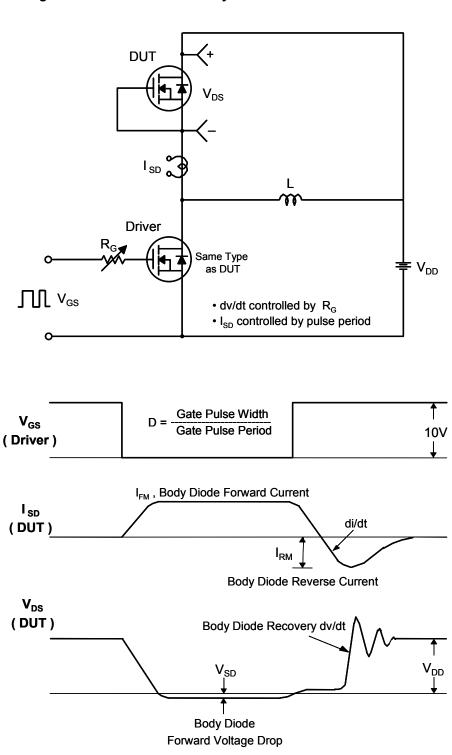


Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

TO-263 2L (D²PAK)

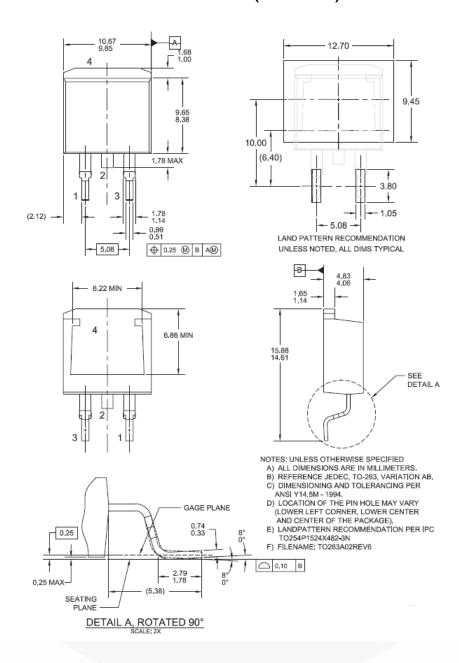


Figure 16. 2LD, TO263, Surface Mount

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT263-002

Dimension in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$

CTI ™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FETBench™ FPS™

ESBC™

F-PFS™ FRFET® Global Power ResourceSM

GreenBridge™ Green FPS™

Green FPS™ e-Series™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™

MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QFET QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SupreMOS® SvncFET™

SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

Sync-Lock™

UHC[®] Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 166

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for on semiconductor manufacturer:

Other Similar products are found below:

FGH40T70SHD-F155 MMBTA42 FDD8424H_F085A LM258AMX LV8760T-MPB-E BAT42XV2 007851X 702607H MC33079DG MC34151P MC78L08ACDG FAN3111ESX FDMA3028N FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MMBZ5233B FPAB30BH60B FSBB20CH60C 1.5KE16AG EMI4193MTTAG MT9V115EBKSTCH-GEVB NB7L1008MNGEVB NC7WZ126K8X NCN9252MUGEVB NCP1075PSRGEVB HMHA2801AV 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU KAI-0340-AAA-CF-AA-DUAL S3JB 2SC5569-TD-E LM324M FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK AR0230CSSC00SUEAD3-GEVK AR0331SRSC00XUEAH-GEVB QEE123 LV8549MGEVB LV8714TAGEVK RFD3055LESM9A MC14016BDR2G MC14043BCP